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1. A standard approach in the theory of oscillations
and waves is to first analyze a simple oscillatory system
and then use the results to analyze a chain of coupled
systems. This approach makes it possible to make the
transition from elementary systems to systems with a
large number of degrees of {reedom. It was recently
leamned’>? that many simple dynamic systems may under-
go transitions from a periodic oscillation regime to a
stochastic regime through a bifurcation ~ a doubling of
the period. The sequence of bifurcation values of the
parameter converges toward a finite limit: the critical
point, It is natural to ask about the behavior of a chain
of coupled systems exhibiting such properties. In the
present letter we analyze the changes in the dynamics
of small perturbations of a spatially uniform solution in
chains of this sort upon a repeated doubling of the tem-
poral period. Tor simplicity we consider the behavior
onty at the critical point. The results may prove useful
for reaching an understanding of the general principles
involved in the onset of a stochastic regime in a distrib-
uted system.

2, As the elementary cell from which we will con-
struct the chain we adopt a dynamic system describable
by the equation

APy (1)

where x is a variable characterizing the state of the cell
at the discrete time n, X' is the corresponding variable
for the time n + 1, and g(x) is the Feigenbaum function.!
A small perturbation ¢ of the variable x transforms over
g upit time in accordance with &% g @)§.

Turning now to a one-dimensional chain of coupled
cells, we assume that Eq. (1) describes a spatially uni-
form solution. We consider a small perturbation of the
type 5e“” (B is the wave number, and m is the cell
index) of this uniform solution. 71 describe the evolution
of the perturbation we incorporate a term linear in ¢ in
the equation for the perturbation:
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Here & is a small parameter, and ¥(x, B) is a function
whose form depends on the particular way in which the
coupling between cells is introduced [¥ (x, 0) = 0].

We impose a renormalization (doubling) transforma-
tion on Egs. (1) and (2) (Ref. 1): We express x and ¢ at
the time n + 2 in terms of their values at the time n,
ignoring the term of order &2,
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and we make the substitution x — x/a in (3), where a =
-2,5029 is the Feigenbaum constant. Using ap(p(3))=9(z)
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and plo(ZWEF 260 (Ref. 1), we again find Egs. (1) and
(2), but with the coupling function # =g 15)e(9(3), 8 +

31s(E)w(£:4) . As aresult of an N-fold application of
this procedure we find
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where the quantities with the superscript 2Ny refer to
the time n + 2N, and the function #r(2,4) satisfies the
recurrence relation
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Since L is a linear operator, we can seek a solution of
(5) in the form

vu (0 8)=L Cl AV B, (), (6)

where Cg(B) are coefficients which depend on the partic~
ular initial function ¥(x, B), and ®5 and vg are the eigen-
functions and eigenvalues of the operator L. We interpret
each term of series (6) as a definite type of coupling, and
we speak in terms of coupling of type A, type B, type C,
etc,, in order of decreasing modulus of the eigenvalues,
The first four functions ®g are plotted in Fig. 1; the cor-
responding eigenvalues are vA = g =—2.503, vg=2, v =
1/a = —0.400, and vp = —0.218,

Upon a doubling transformation, the weight with which
each lype of coupling is included in the coupling function
¥N(x, B) is multiplied by the corresponding eigenvalue.

At large values of N the couplings of type A and B become
predominant, because of the condition |vp gl>1 (provided,
of course, that CA B # 0). The general qflestion of the
possible types of critical behavior thus reduces to studying
chains with coupling functions of the form ¥ = Cp%®A +
Cp®p; i.e., the problem is greajly simplified in compari-
son with the problem as origindlly formulated, which con-
tained the arbitrary function ¥{x, B). It follows that in
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order to study the critical behavior we must be able to
find CA and CB for the specific systems. We turn now
to one method for determihing these coefficients.

3. Mapping (1) has cycles of periods 2, 4, 8, 16, ... .
We define the multiplier for the 2N cycle, uN(B), as the
quantity which shows by how many times a perturbation
of the form eifm changes over a period of the cycle against
the background of the spatially uniform solution corre-
sponding to this cycle. It can be seen from (4) that the
renormalized value of x corresponding to the 2N cycle
is xx = 0.5439, the root of the equation? g(x) = Xx. Substi-
tuting x = x» into the equation for &, using (6), and as-
suming N large, we find

A (B) = mentpaec, 2 (7

where px = g'(xx) = —1.6012, and CA,B=CA,B¢A,B(X*)8
If we know the multipliers even for just two different
cycles, we can find("cA and cg from (7).

4, If each cel{ris coupled in a symmetric fashion with
its neighbors on the left and right, then the coupling func-
tion at small values of B is of the form p(x,@)x¢Yx)4"
How does the presence of one type of coupling or another
affect the dynamics of the perturbation here? Let us
examine some particular cases.

A,cp®0,cg=0. Since g <0, it follows from (7)
that for 2N cycles with even values of N for cg < 0 and
odd values of N for cA > 0, the growing perturbations
are those with small values of B. The corresponding
interval of B values falls off with increasing N in pro-
portion to lel™%Z  For cycles with odd values of N for
cA <0 and even values of N for cp > 0, the perturbations
grow more rapidly as their wave number increases.

B. cpA=0. Ifcg< 0, then for any 2N cycle the grow-
ing perturbations are those with small values of 8, from
an interval whose width is proportional to 2“N/2. If ecg>o0,
all the 2N cycles are unstable with respect to perturba-
tions with large wave numbers.
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In the case |cql«lcsl behavior of type B is found for
cycles whose period is not too long; as N increases, this
behavior gives way to type A behavior (since vy | > Iupl

5. It has been shown elsewhere that Eq. (1) gives
a satisfactory description of all the details of the criticd
behavior for a broad range of dynamical systems with
both discrete and continuous time scales.b? It may thus
be expected that the results derived above will apply to
an equally broad range of one-dimensional chains. As
a specific example we consider a chain of parametrically
excited nonlinear oscillators, %a case of independent in-
terest in solid state physics, nonlinear optics, and elec-
tronics:
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Here xpy, is the generalized coordinate of the m-th oscil-
lator; k, q, and T are parameters; and & is the coupling
coefficient between oscillators. At fixed values of q and
T, the specially uniform solution of Eq. (8) undergoes 2
bifurcation (doubling) with decreasing value of the paran-
eter k, exhibiting regimes (cycles) of periods 2T, 4T, 8T,
...(Ref. 3). For q =4, 2n/T = 2,04, the limit of the se-
quence of bifurcation values of k is kg = 0.4105. At k=k¢
there are cycles with all possible periods 2NT, The multi-
pliers of these cycles were found by numerical calculati
in the present study for perturbations of the type eifm
with B2 << 1: uN(8) = px + & %nB2. The values of %y for
N=1,2, 3 and 4 are 5.12, 4.49, 27 .4 and —36.6, respec
tively. This sequence is reproduced accurately by the ex-
pression »y= calN + ¢2N (¢, = —1.30, ¢, = 0.90), con-
firming the arguments in Sections 1-4.

I wish to thank A. P. Kuznetsov and A, G. Rozhnev
for discussion.

'M. J. Feigenbaum, J. Stat, Phys. 19, 25 (1978).

2. p. Eckmann, Rev. Mod. Phys. 53, Part 1, 643 (1981).

3F. M. Izrailev, M. 1. Rabinovich, and A. D. Ugodnikov, Preprint No. 17,
IPF AN SSSR, Gorki (1981).

Translated by Dave Parsons

S. P. Kuznetsov



