UNIVERSALITY AND SCALING IN THE BEHAVIOR OF
COUPLED FEIGENBAUM SYSTEMS

S. P. Kuznetsov UDC 517.9

The behavior of two symmetrically coupled identical systems, each of which is separately
capable of demonstrating transition to chaos through period doubling bifurcation, is inves-
tigated. Scaling relations are established, being the generalization of the Feigenbaum
scaling laws to coupled systems. The universal configuration of different regime zones is
found in the space of three parameters: the Feigenbaum control parameter and the coefficients
of inertial and dissipative types of coupling.

The study of stochastic oscillations in dynamic systems has recently led to the formation
of several universal models, describing the behavior of various systems near the threshold of
generation of chaos [1-3]. One of these models, henceforth named the Feigenbaum system, is
a generalized nonlinear dissipative system, undergoing transition to chaos during the varia-
tion of some control parameter A through a hierarchy of period doubling bifurcations. As
shown by Feigenbaum [1, 2], this transition obeys a number of unilversal scaling laws. In
particular, the sequence of bifurcation points is determined by the equation

Am=Ac—Kd—™, @)

where 8§ = 4.6692 is a universal constant, and A, and K are constants depending on the specific
system. This type of behavior i1s observed in numerical computations and in experiments on
many specific systems in radiophysics, hydrodynamics, as well as chemical and biological
models [4-7]. A natural path of constructing a theory consists in developing more complicated
objects on the basis of the Feigenbaum system, such as systems with external action, coupled
systems, a distributed medium [8-14], and in the study of order—chaos transition laws in

them.

We turn to the problem of behavior of two identical symmetrically coupled elements,
each of which is a Feigenbaum system. Specific examples can be coupled nonlinear oscillators
under periodic external action, coupled cells undergoing self-catalytic chemical reactions,
communicating biological populations, etc.

The simplest Feigenbaum systems is the recurrent equation [1]:

(2)

Int1=A—x2
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where x characterizes the state of the system at the discrete moment of time n. The behavior
of the two coupled systems (2) for several special methods of introducing coupling was in-
vestigated numerically in [9-11]. It was shown that the transition paths of coupled systems
to chaos are richer than for individual elements: transitions through destruction of quasi-
periodic motions and intermittence were observed besides period doubling. The studies

[9-11], however, have left open principal questions concerning the clarification of the
properties of coupled systems following from the Feigenbaum laws for the constituent elements,
as well as explaining the extent of dependence of behavior of coupled systems on the specific
method of introducing coupling.

The purpose of the present study 1s.to address these problemé. The study is based on
the renormalized group (RG) approach, being a development of the analysis method earlier
suggested for one-dimensional chains consisting of Feigenbaum systems [12, 13].

1. BASIC EQUATIONS

1.1. Qualitative Discussion of Methods of Introducing Coupling. A traditional example
of a TFeigenbaum system, described by Eq. (2), is bilological population [2, 7]. In this case
xn characterizes the magnitude of the population (more exactly, its deviation from an extre-
mum level) before the n-th cycle of multiplication and decomposition, and the parameter A can
be determined independently.

We use this example to illustrate the metﬁods of iIntroducing coupling between Feigenbaum
systems. Consider initially two uncoupled populations of the same shape, whose magnitude is
given by the variables xp and yn, evolving according to the equations

xﬂ+;=l—x3, yn+l=’\'—'y,2|‘ (3)

This situation is shown schematically in Fig. la. Each rectangle represents a cycle of
multiplication and decomposition, corresponding to the nonlinear transformation of the
population value, while the vertical lines represent the period of existence of population
without change of magnitude.

Coupling between populations can be introduced by two substantially different methods.
The first consists of the fact that at Intermediate times between multiplication and de-
composition perieds there can be "gliding" in both sides of the coupling channel, as illus-
trated in Fig. 1b. This coupling is, obviously, capable of equating the instantaneous
populations of both populations. If the population magnitude before the following cycle
of multiplication and decomposition is given by the quantities Xn and yn, then following this
cycle they are given by the quantities A — xh and A — ya. Assuming that then some fraction
e "slides' from its population to the population along the coupling channel, we find the
variable values before the following cycle:

Xnpt = A — 22 4 e (x2 — 92), Yo =X —yi4e(y2 — i) %

A coupling of this type can be called dissipative. Indeed, consider the transformation of
phase space AxpAy, after a unit time:

Tnes $res
Zne2 dne2
Tned Hned
Tn  Yn

Fig. 1
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Axnp1AYnp = JAxnAYn,

where J is the Jacobian, namely,

J o= 0%n41/0%n Oxni1/0Yn
0Yn41/0%n OYn11/0yn

- —2xn(1—e) — 28y,

=4xnyn(1—2¢).
—2ex, —2yn (1—e) n( e)

In the absence of coupling Jo = 4xpyn, while in the presence of coupling J = (1 — 2¢)Jo.
Thus, when the condition 0 < e < 1, which is natural within the biological interpretation,
is imposed on e the phase volume undergoes further compression in comparison with the same
quantity in the absence of coupling.

The second method of introducing coupling consists of obtaining the possibility of
"gliding" from one population to another within a cycle of multiplication and decomposition,
as shown in Fig. lc. Denoting by u the fraction starting to travel along the coupling
channel, one obtains the following equations: Xa+1=A—(Xn—uxa)?+uln, Yntt=A—(Yn—pyn)2+ur,.

. 2 2 A .
Replacing Xx — —(xl—t%;- Y *-{-1:—':—_%2—' A - _'%%"/_27331/_‘}_ s they lead to the form
Xnpr=A—22+p(Yn—xn), Ynp1=A—y+n(Xn—yn). (5)

The principal difference between the methods described of introducing coupling consists
of the following. At some moment n let both variables occur near the extremum point of the
mapping (2): [x;‘ << 1, [yﬁl << 1. Due to dissipative coupling the information on the
e BEE
portional to the square of a small quantity). For the system (5), on the contrary, the
information is not lost: the previous history of the system affects the subsequent behavior
in bypassing the quadratic extremum through the coupling channel. This justifies calling
the second type of coupling inmertial. The definitions given here are preliminary, and will
be refined in Section 2. : :

different subsystem states will be lost at the moment n (the difference vy is pro-

Let there now exist coupling channels of both types (Fig. 1d). If the coupling is weak,
corrections to the right hand sides of Eqs. (3) must appear additively, so that we obtain
directly

Xnpr=A— 23 +e(x] — y3) — ¢ (x, — Ya)

(6)
Yat1 = A — }’?, +e (y: - x,’.)_ - ()’n - X,,).

It seems. that other methods of introducing éoupling need not be considered: for a suitable
parameter choice Eqs. (6) guarantee adequate description of Feigenbaum systems, weakly
coupled in an arbitrary manner (see below).

For what follows it 1s useful to introduce the variables &, = (xy + yn)/2, n, = (% —
yn)/2, characterizing the symmetric and antisymmetric parts of the solution. In the new
variables Eqs. (6) acquire the form

Enrt=A—E2 —n} Mnp= —2B (Ea+o)Na, (N

where B = 1 — 2e, o = u/(4e — 2).

1.2. Scaling Laws., We turn now again to the system of uncoupled elements (3). The
following scaling law follows from Feigenbaum's results [1, 2]:

a) Let it be known that for the parameter value A. + A the system transforms from
state (x, y) to state (X, Y) after 2M units of time.

b) For the parameter value A, + A/8 it then transforms from state (x/aq, y/a) to state
(X/a, Y/a) after 2™t units of time, with 8§ = 4.6692, a = —2.5029.

In different words, if there exists any solution of system (3), then one can search a
scaling regime with a time scale multiplied by two times. For this one must recalculate the
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initial state (x, y) and the value of the parameter A according to the rules given.

A similar scaling law must also exist for coupled systems, while with the exclusion of
coupling it necessarily transforms to the statement given above. Therefore the rule of
computing x, y, and A must be retained, at least in the case of weak coupling. Consequently,
the problem consists of identifying the rule of computing the function characterizing the
coupling.

Consider initially system (5) (Fig. 1lc). In transforming to the regime with a doubly
increased time period the scale of the variables x and y is decreased by a times near the
extremum points.  The relative effect of the perturbation, proceeding along the coupling
channel and bypassing the nonlinearity, will be stronger by a times. To compensate the
increasing effect of coupling and establish scaling one must decrease the coupling parameter
by a times.

Let us now consider the system (4) (Fig. 1b). 1In multiplying the time scale by two
the coefficient 1 — 2e, characterizing the further compression of the phase volume, is
raised quadratically. To retain scaling it is necessary to decrease the coupling parameter
e by b = 2 times. '

In the general case it can be expected that the coupling can be represented in the form
of a combination of two components, remormalized during the doubling of the time scale by
a and b times, respectively. To justify the suggested scaling law and verify its universality
we carry out our study within the renormalized group approach.

2. RENORMALIZED GROUP ANALYSIS

Consider coupled recurrent equations of general form

Xnpr=[ (Xn) +@ (Xn, Yn), yn+l==f(yn)'FW(yn»xn)v ()

where xpn and yn are the variables characterizing the two identical coupled subsystems, f (x)
is a function satisfying the Feigenbaum conditions [1, 2], and ®(x, y) is a smooth function
of two variables, obeying the condition ¢(x, x) = O,

We express the values of xpt. and yn+. in terms of xn and yn, and carry out the replace-
ment x + x/a, y > y/a. As a result, we obtain

xn+2=f1 (xﬂ) +Cp1 (xm Yn), yn+2=f1 (y”) +»‘p| (ym xﬂ)',
where

fi(x) =daf ([ (x/a)),

o1 (% y) =al[(f (x/a) +o(x/a,yla)) —F(f (x/a)) +q(f(x/a)+o(x/a,yla), f(yla)+q(yla,x/a))]. ®

Relations (9) define the RG operation of transforming the functions f and ¢: (g})==1?(f),
1 ?
by means of which is realized the transition to describing the system dynamics with a doubled

time interval between successive iterations. By multiple application of the RG transformation
we reach the recurrent equation

(fN+1 ) - R(f/v) ’ (10)

PAtL N

where fN and ¢y are the functions determining the change in the system state after 2N itera-
tions:

Xngd" =[x (xn) +on(Xn, Yn),  Yn+e"=FNn(Un) +on (Yn, *a). (11)

As follows from [1, 2], Eq. (10) has a solutlon independent of N (a fixed point in

function space)
()R () mamele)
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where g(x) is the Feigenbaum function. We seek a solution of Eq. (10), adjacent to the
fixed point (12), by putting

v (x) =g (@) +in (%), oty =0n(%9), [Ivl<l, |on| <.

In the linear approximation we obtain from Eq. (10)

~ ~ A ~
N AT LO
(i “)=P(~”)=( ,\)({”) (13)
PN+1 N O'M] \en
where the linear operators [ and M are determined by the equations

21 (x) =alg’ (g (xla)) F(xla) +1 (g (xla))]; (14)
Mo (x, y) =alg’ (g (x/a) yp(x/a, yia)+o(@(¥ia), g(y/a)]. (15)

To find the general shape of the corrections EN,Q;N we turn now to the problem of eigen-
functions and eigenvalues of the operator P:

~ ~

()F6) -
P ?

~

The result of N-fold action of the operator P on any vector (~) is represented for large N
9 4
by a linear combination of those eigenvectors corresponding to values Iv‘ > 1 which we will

call essential. As in [1, 2], we exclude from the treatment the eigenvectors corresponding
to infinitesimal replacements of the variables x, y in the fixed point equation (12).

The eigenvectors of the operator P can be divided into two classes. The first class

-~

consists of vectors of the form (g) , where f are eigenfunctions of the operator (14). This

class of eigenvectors refers to the subspace of perturbations of the fixed point (12), not
accompanied by inclusion of coupling between subsystems. According to Feigenbaum, there

h(x)
0

exists a unique eigenvector ot the given class k ) with eigenvalue v = § = 4.6692; the

universal function h(x) was calculated in [2].

0 -
The second class of eigenvectors form vectors .of the shape (~ ), where @ (x, y) are

- #(x,Y)
eigenfunctions of the operator (15), obeying the condition ®(x, x) = 0. Perturbations of

the fixed point, described by these operators, correspond to the coupling introduced.
Numerical solution of the problem of eigenfunctions of the operator (15) (see Appendix 1)
showed that there are two substantial eigenfunctions &;(x, y) and ¢2(x, y), possessing the
eigenvalues v; = a = —2.5029 and vy = b = 2 (Tables 1 and 2).

Thus, for asymptotically large N the functions fy and ¢y (see Eq. (11)) have the form
v (x) =g () +A8VA (2); @7
o (x, ¥) =0a"®; (x, ) +BOVDa (x, v), . (18)

where the shape of the initial perturbation %o(x), &o(x, y) determines only the values of
the constants A, «, B8.* Hence follow important conclusionms.

*We note that the quantity A characterizes the deviation of the Feigenbaum control parameter
of the subsystems from the critical point, i.e., A = const(X —A.).
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1. Universality. If the original ("bare") mapping is near the fixed point (12) (i.e.,
¥nt+: = g{xn) + small correction, yn+; = g(yp) + small correction), then the shape of the
mapping describing the dynamic system after a sufficiently large number of iterations is
totally determined by the three constants A, a, B. Therefore the structure of bifurcation
sets in the space of the parameters A, o, B is universal and is independent of the specific
shape of corrections to the bare mapping.

Scaling., At the parameter space point with coordinates (A/§, a/a, B/b) the functions
3 (x) and @ N+3 (x, y) have exactly the same form as the functions fN(x) and qON(x, y) at
the point (A, a, B). This implies that at the first point the system must demonstrate the
same behavior regimes as in the second, but with a time scale multiplied by two. In different
words, the structure of the space of parameters possesses the property of scale invariance
and transforms into itself, and changes the scales of variation of the three coordinate
axes by 8, a, and b times, respectively, which is consistent with the assumptions in the
preceding sectlon concerning the scaling hypothesis. Obviously, the first term in the ex-
pansion of the coupling function (18) is associated with the inertial, and the second —
with the dissipative type of coupling.

3. THE STRUCTURE OF PARAMETER SPACE OF COUPLED
SYSTEMS

To study the universal structure of the parameter space of coupled systems one can use
the model considered above (6) or use a different notation (7). Indeed, from the qualitativw
considerations of Sec. 1 follows the existence in this model of both inertial and dissipative
coupling. The presence of the two coupling parameters € and p makes it possible to assign
an arbitrary relation between both coupling types. It is shown in Appendix 2 that a formula-
tion of the equations admitting an independent control level of both pure coupling types is
obtained by putting in Eq. (7) B = e~BF(a, A):

Ent1=A—E% — 72, Nny1= —2eBF (o4, A) (Enta)hn, (19)

where ¢ and B are the coupling coefficients of the inertial and dissipative types, while
the function F(a, A) is approximately expressed by the equation

F (e, A) = (1—0.6025c+0,101962—0,0278aA) 22778 (20)
The starting moment of studying the structure of the system parameter space is the
analysis of periodic regimes (cycles).

3., Cycles and Their Stability. We assume that for several values of the system para-
meters there exists an N-cycle, 1l.e., a solution for which Ep4N = &, nn+N = nn. For

stability analysis one usually considers the evolution of increments En, “n to the wvariables
Ens Np following a perlod of the cycle. As follows from Eq. (19)

-~

(i~)=9(%\)l (21)
NN "o
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A A A A R
where J=Jn-t/nv-2..Jo 1s the matrix of a monodrome cycle, and Jn 1s the Jacobi matrix of
mapping (19) at the n-th pdint of the cycle,

N (=2 —20m
Jn_(—QB"ln —2B (§n+a) ) (22)

The eigenvalues of the matrix J (multipliers) are determined from the equation

p2—pS+J=0, (23)

where S is the trace and J is the determinant of the matrix 3. 1In the (8, J) plane the
stability region of the cycle (]ul < 1) is mapped by a triangle (Fig. 2) with sides

1) J4S+1=0, 2) J—S+41=0, 3) J=1. (24)

Passing through each of the three sides of the triangle corresponds to 1) period doubling bi-
furcation of the cycle, 2) tangential bifurcation, and 3) bifurcation of quasiperiodic
attractor creation (Andronov—Hopf bifurcation). Tracking the cycle evolution during varia-
tion of the problem parameters, and calculating the trace and determinant of the monodrome
matrix, one can find the bifurcation surfaces of the three enumerated types in the parameter
space (A, o, B).

We note that the original equations admit solution in the form of cophase subsystem
motions, i.e.,

Xn=Yyn or MNn=0. (25)

In this case the problem reduces to Eq. (2). Therefore, according to [1, 2], for A < Ae =
1,40116 there exist cophase cycles of period 2M, while cophase chaotic regimes occur for

A > Ac. For cophase cycles the matrices Jn and consequently J are diagonal; therefore the
eigenvalues are simply the diagonal elements of the matrix J:

N N
p=I] (—2&.), po=JI (—2B(En+a)),

Nual Nm]

where N is the cycle period. The stability condition is

ad Y (26)
|II (—28.) | <1, |[I("2B(§n4"“))l<:l
n=m] nel
while for cycles of period 1 and 2 it is expressed explicitly, since
for N=1: p=1—YTF4h,  po=B(1+a—yiFdk; (27)
(28)

for N=2: py=4—4\, p=4B*(1—A4ata?).

3.2, A System with Purely Dissipative Coupling. We put in Eq. (19) ¢ = 0. Taking
into account that F(0, o) = 1, we have

Eati=A—E2 — m2,  Mapr= —2e-BEmn. (29)

We consider only the case B > O (the dissipation condition).

For A < Ac the behavior of system (29) is very simple: it demonstrates stable cophase
cycles, whose period doubles for the same Ay values as for the isolated Feigenbaum system
(2). 1Indeed, it is seen from Eq. (26) that the first multiplier of the cophase 2M-cycle
coincides with the multiplier system (2), while the second equals . p2=ﬂhe'ﬂw. In the
existence region of the given cycle, as in that of the attractor of system (2), |u|1 <1,
therefore ‘also lug] < 1. Consequently, the cycle of system (29) is stable in the same
interval of the parameter A as is the cycle of system (2). Therefore, on the parameter
plane (8, A) the regions of cycles of a different period, realized for A < Ay, are bounded
by the horizontal lines A = Xm (Fig. 3).
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For A > A¢ the cophase regime can lose stability to antisymmetric perturbations 1f the
Lyapunov characteristic index, calculated for the strange attractor of system (2),

N
= m L |
1= g & By
n=l
becomes larger than B [14]. For A > A, there exist reglons of three types in the parameter
plane: 1) zones of cophase chaotic motion, determined by the condition 0 < y(}) < B8, 2)
instability zones of a cophase chaotic regime, in which y()A) > B, and noncophase subsystem
stochastic oscillations are realized, and 3) stability zones of periodic motions, coinciding
with the "stability windows" in the post-critical region of system (2) [1, 2]. The coeffi-
cients of all these regions can be found by using the well-known dependence y(X) for the
system (2) [15]. We note that the pattern of regions iIn Fig. 3 transforms into itself when
the scale changes by 8 times along the A axis, and by b = 2 times along the B axis with
respect to the point (0, Ac). Thus is expressed the scaling law for a system with digsipa-
tive coupling.

3.3, A System with Pure Inertial Coupling. We put now 8 = 0 and consider the behavior
of system (19) as a function of the parameters o (the coupling coefficient) and X (the
Feigenbaum control parameter). Since hysteresis effects are possible in a system with
inertial coupling, it is useful to represent the surface (a, 1) as a sequence of glued sheets
(Fig. 4a). One of them, denoted as the S-sheet, corresponds to cophase motions of subsystems,
while the remaining N-sheets — to noncophase motions. If the intersection of some bifurcation
line leads to a soft transition from one sheet to another, then both sheets are assumed glued
along this line (see Fig. 4a, transition 1). The nonglued sheet edges reflect the existence
of rigid bifurcation — a jump from one sheet to another, accompanied by hysteresis (transition
2 in Fig. 4a). TFigure 4a provides a crude preliminary concept on the structure of parameter
space. We turn now to discuss it in detail.

The S-Sheet. Consider cophase periodic motion in the region A < A.. From Eq. (26) one
can numerically find the boundaries of the stability region of 2M-cycles. To these belong:
1) the horizontal lines A = XAj, determined by the condition pi(A) = —1 and corresponding to
the bifurcation conditions of the period of cophase cycles, and 2) the curves assigned by
the relations u.(A, @) = +1, corresponding to stability loss of the cophase regime with
respect to an antisymmetric perturbation and transition to any N-sheet. Both families of the
‘bifurcation lines on the S-sheet are illustrated in Fig. 4b. 1In the lighted,areas are realized
stable cophase cycles with a period indicated in the figure, and the instability regions of
cophase regimes are shaded. The line on which the S-sheet is glued to N-sheets consists of
the lowest arched boundaries of the shaded areas, on which p, = —1,

We note the following scaling property which 1s clearly fixed in numerical computations:
the whole region pattern in Fig. 4b is reproduced inside the rectangle, denoted by dots, with
a scale decreased § times along the ordinate axis and a times along the abscissa axis. Since
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the constant a is negative, the location of regions in large and small rectangles is opposed
in orientation to the abscissa axis.

N-Sheets. We étudy now the regions of noncophase motions, realized on N-sheets. Due
to the existence of a scaling law it is sufficient to study the structure of a single N-sheet,
one on which is realized a transition during a soft stability loss of a cophase 2-cycle.

The N-sheet under consideration 1s glued to an S—sheet along the line determined by Egs.
(26) and (28): 4B*(1 — A + o + a?) = —1, A < 1.25. During transition through it from below
upwards there is a stability bifurcation creation of a 4-cycle, corresponding to motion of
both subsystems, phase shifted with respect to each other by half a period:
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Ynra=Yn, Yn+z=&np or &En+2=EFn; Np+a== —1ny, (30)

This cycle can be studied analytically: introducing the quantity ¢ = &, + £, + 2a, the cycle
elements and the parameter A are expressed in terms of z:

Eia= (1/2) C£VE*+B-?) —a, 71, 2:=YC(1-taA+AL,,,); (31)
A=CH4t+1/4B2 -2 —a, (32)

where A = —(z + 1/2zB*)~*, B = F(a, A), C= (L + 2a — r)/A.* The multipliers are calculated
by the usual equations (21)-(23). Different bifurcations can occur with the cycle (30),
which we now consider.

1) Assembly Point and Folding Line. It is shown in Fig. 5 how the curve A = A(g) (32)
evolves with variation of the parameter a., For a < —0.5634 there exists one, while for
a > —0.5634 and:Apin < A < Apax — three [ values for a single A. Consequently, in the first
case there exists one, and in the second — three different 4-cycles of type (30). Among these
cycles one is always unstable (it corresponds to the mean f value), while the two others are
stable in a definite parameter regilon and can be observed as attractors. Thus, at the point
a = —0.5634, X = 1.0829 there exists assembly bifurcation [16]. At this point of the surface
(o, L) there are two folding lines [16] corresponding to the extrema of the curve A(L) in
Fig. 5. This line can be found by supplementing Eq. (32) by the condition 3A/37 = 0. In
Fig. 4c, illustrating the structure of the N-sheet, the point A is an assembly point, while
the lines BA and CA are folding lines. In by-passing the point A clockwise the attractor
(a 4-cycle) evolves continuously till the intersection with the line CA, following which
there 1s a jumpwise regime replacement. This is again a 4-cycle obeying condition (30), but
differing from the old level of the antisymmetric mode n. 1In by-passing the point A counter-
clockwise, the jump occurs during intersection of the line BA. As can be verified, on the
folding lines one of the multipliers of the 4-cycles becomes +l. At the assembly point the
multipliers are: u, = 1, ua = 0.1472,

2) Andronov—Hopf Bifurcation Line and Transition to a Quasiperiodic Attractor. 1In
Fig. 4c one sees two shaded regions, lying in two portions of the N-sheet surface, matched
at the assembly point. In these regions the determinant of the monodrome matrix of the 4-
cycle (30) exceeds unity, i.e., the cycle is unstable (Sec. 3.1). At the boundaries of the
shaded areas the determinant equals unity, which corresponds to Andronov—Hopf bifurcation
(a transition of a pair of complex-conjugate multipliers through a unit cycle) with creation
of a quasiperiodic attractor. Along with the bifurcation lines are shown the values of the
rotation cycle — period ratios of the original to the newly generated motions.

The shaded areas have a fine structure in the form of synchronization laws, resting on
points of the bifurcation lines with rational rotational numbers, and a residual set corres-—

ponding to quasiperiodic motion [17]. This structure was not investigated by us in any
detail, and is not shown in the figure.

3) Edge of the N-Sheet: Lines of Tangential Bifurcation. On both boundaries of the
N-sheet shown in Fig. 4c one of the multipliexs of the 4~-cycle (30) becomes +1. During
intersection of any of these boundaries at the point (&, A < Ac) there is a jumplike transi~
tion to the cophase regime, illustrated by a point with the wvery same coordinates, but on

*Due to the fact that B = F(a, 1), relationship (32) is an equation in A. However, the
dependence B(A) 1s weak; therefore, for sufficiently accurate determination of A it is suf-
ficient to iterate Eq. (32) once or twice.

690



Fig. 6

the S-sheet. 1In this case there is hysteresls: the inverse jump on the N-sheet occurs only
during intersection of the lateral boundary of the stability region of the cophase regime,
which does not coincide with the edge of the N-sheet.

Due to the scaling law, effects similar to those descrbed in paragraphs 1)-3) must also
occur in N-sheets, glued to the lower arched boundaries of the small regions shaded in Fig. 4b.
Figure 6 shows results of quantitative verification of the scaling shape of bifurcation lines
on different N-sheets. These lines must coincide in the coordinates (oa™, (A — XAc)8™), where
2M is the period of the cycle created during the soft transition on the sheet under considera-
tion. As seen from Fig. 6, the results form = 2, 5, and 6 are in good agreement. The same
conclusions on the behavior of the system on the N-sheet, obtained for m = 2, also extend to
the remaining N-sheets; the difference consists only of changing the time scale of motion.

The constructed "geographic map" of the surface of the parameters (a, A) provides a
fairly complete concept on the different possible transition paths to chaos in a system with
inertial coupling. In the original state let there be selected some point on the S-sheet for
A < Ac. Moving, then, along the surface (@, 1) in the general direction of increasing A,
one can observe, for example, these scenarios of chaos generation:

1) An infinite sequence of period doubling of cophase motions (Fig. 7, path 1).

2) An arbitrary finite number of period doublings of cophase cycles, then period
doubling with the appearance of a noncophase cycle and two variants of further evolution:

a) Andronov—Hopf bifurcation with the creation of quasiperiodic motion, its destruction
and transition to chaos (Fig. 7, path 2).

b) Jumpwise transition to an S-sheet and subsequent repetition of the effects described
in paragraphs 1) or 2) (Fig. 7, paths 3 and 4).

3.4. A System with Combined Coupling. In the case of combined coupling the number of
substantial coupling parameters increases to three, so that a smooth mapping of the structure
of the parameter space becomes hindered. Therefore we restrict ourselves to a qualitative
description only.

We pretend that in a system with a purely inertial coupling type one introduces an addi-
tional, dissipative coupling, and proceeds to the pattern evolution behind the surface (a, X).
Calculations show that for small dissipative coupling the structure of this surface is
retained in the form of glued N- and S-sheets, as well as the general location of regions on
these sheets. Increases in dissipative coupling are initially small, and therefore large
instability zones of cophase regimes occur from above and disappear in the region A > Ao, To
have each successive branch vanish, the dissipative coupling parameter must be multiplied by
a factor of two., Finally, an increase in dissipative coupling leads to the fact that the
subcritical system behavior and the character of transition to chaos become the same as
described in Sec. 3.2.
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To verify the scaling relations consider the cross section of the parameter space
(A, a, B) with the surface

B=clh—he]'ot¥, (33)

where ¢ is an arbitrary constant. With a scale varying along the A axis by § times and along
the a axis by a times the quantity B changes by a factor of two, and therefore the configura-
tion of regions on the given surface must transform into itself. Figure 8 shows the lines

of stability loss of cophase 2M-cycles on the surface (33) for several c values in the coordi-
nates (aa™, (A — Ao)8™). Good agreement of the data is observed for different m.

Based on the study performed above, the following may be concluded:

1) The existence of Feigenbaum properties for the component elements leads to the fact
that the universality and scaling laws also océur in dynamics of coupled systems.

2) Universality is expressed by the fact that any weak coupling, introduced by means
of an arbitrary smooth function of state elements, is totally characterized by the two
constants & and B, the coefficients of inertial and dissipative coupling types. Therefore,
a full description of coupled systems near the transition point to chaos is achieved by
assigning the three parameters A, a, B, where A is the Feigenbaum parameter of the subsystems

3) The structure of bifurcation sets in the parameter space A, o, 8 obeys the scaling
law, and transforms into itself with the following scale changes along the three coordinate
axes, respectively, § = 4,6692, a = —2.5029 and b = 2 times. This universal, three-dimen-
sional strutture contains surfaces of bifurcation doubling, tangential bifurcation, and bi-
furcation of quasiperiodic motion creation,

Due to the universality of the laws considered, the results obtained can also refer to
a wide class of coupled systems of differing orders, described by both mapping and differen-
tial equations.
APPENDIX 1

For numerical solution of the problem of eigenfunctions of the operator M (see Eq. (15))
we used an iteration method consigting of the following. As is easily verified, the result
of N-fold action of the operator M on the function ¢ (x, y) can be calculated by the equations

A
MVe = aVe,N, Enpi=g" (n)Ent-@(Xn, Un), Xnp1=g€(*¥n)y Ynt1=8€(Yn),
xo==x/aV, yo=yla¥, ¥E=0,
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TABLE 1. The Eigenfunction ¢,(x, y)
X
Y —1,00 —0,75 —0,50 —0,25 0 0,25 0,50 0,75 1,00

—1,00 0,0000 -0,1713 —0,3447 —0,5133 —0,6723 —0,8158 —0,9322 —1,0024 —1,0000
—0,75 0,1611 0 —0,1676 —0,3334 —0,4916 —0,6358 —0,7550 -—0,8311 —0,8389
—0,50 0,3110 0,1611 1] —0,1638 —0,3199 —0,4650 —0,5875 —0,6702 —0,6890
—0,25 0,4506 0,3128 0,1589 0 —0,1562 —0,3025 —0,4285 —0,5183 —0,5494
0 0,5804 0,4556 0,3097 Q,1549 0 —0,1475 —-0,2777 —0,3755 —0,4196
0,25 0,7006 0,5898 0,4526 0,3024 0,1489 0 —0,1348 | —02413 | —0,2994
0,50 08110 0,7151 0,5875 0,4424 0,2904 0,1399 0 ~—0,1160 —0,1890
0,75 09111 08311 0,7136 0,5740 0,4238 0,2716 0,1261 0 —0,0889
1,00 1,0000 0,9368 0,8302 0,6966 0,5482 0,3941 0,2427 0,1057 0
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TABLE 2. The Eigenfunction &.(x, y)

x
y
] 0,25 0,50 0,76 1,00

0 0 —0,0658 —0,2584 —0,6698 —0,9316
0,25 0,0659 0 —0,1931 —0,4958 -~—0,8697
0,50 0,2612 0,1948 0 —0,3064 —0,6871
0,75 0,6774 05102 03126 0 —0,3921
1,00 1,0000 0,9316 0,7280 0,4082 0

lote, The function &,(x, y) is even in both arguments.

where n = 0, 1, ..., 2N — 1. Assigning an arbitrary bare function ¢(x, y), and calculating

ﬁNtPfor different x, y, and N, it can be expected that MN¢ﬁj;vN¢(x, y). Here ¥(x, y) is the
eigenfunction corresponding to the eigenvalue v, maximum in absolute value among the compo-

nents of @ (x, y).

Such calculations were carried out for N = 2-6; the functions g(x) and g'(x) were
calculated by means of polynomial approximations [2]. As bare functions we used the func-
tions @ (x, y) = (x — y)¥(x, y), where y(x, y) = 1, x, ¥y, x*, xy, y°, x°, x’y, xy°, y°. (4s
is well known, linear combinations of power monoterms by a Taylor series can be represented
by an arbitrary smooth function.) When assigning y(x, y) = 1 the result of the iteration
procedure is the eigenfunction ®1(x, y) (Table 1) and the éigenvalue vy = a = —2.5029.

For the remaining ¢ = xMyD the iterations led to the eigenfunction 8% (x, y) (Table 2) with
eigenvalue v, = b = 2. It can be shown that the equalities v = a and v = 2 are accurate.

oo (x, ¥) }
Yeoax

From the equation vé = Mo with account of (15) we have for the function F(x)== [ 3
y

vF(x) =g’ (g (x/a}) F (x/a) +g&’ (x/a) F (g (x/a))

—an equation sufficient for the determination of eigenvalues. This equation was analyzed in
[13], where 1t was shown rigorously that the old eigenvalues are v; = ¢ and v; = 2.

The remaining term, obtained in approximating ﬁNq>by a linear combination of the func-
tions ®,(x, y) and ®.(x, y), consists of two parts, one damped for N -+ «, and the other
undamped. The latter is given by the eigenfunction @s(x, y) = g'x)(y —x) —gly) + g(x)
with eigenvalue y, =1, and is removed by the variable replacement x +x + (y — x)const, y > y*
(x — y)const.

APPENDIX 2

It seems that purely dissipative coupling is realized in system (4), while system (5)
displays a combination of both coupling types, understood in the sense of Sec. 2. A system
with a purely inertial coupling type can be constructed, assigning in (7) a parameter
dependence B = F(a, A), so that a scaling law characteristic of inertial coupling be best
satisfied. We use this idea for approximate calculation of the function F(a, A). Consider
a cophase cycle of period 2:

Ei=A—E&], Es=A—E) mo=m=0, (A.2.1)

whose multipliers are determined by Eqs. (28). We require that for some value of the para-
meter X\, and a coupling decreased by a times, i.e., for o, = o/a, B, 3_B‘/a, there exist a
cophase 4-cycle Eo, &1, &2, E3, Ny = 0, obeying the scaling relations £o = £o/a, E, = E,/a,
and possessing numerically the same multipliers as does the 2-cycle (A.2.1). For the
multipliers of the 4-cycle we have

mi=16(Zo/a) (8,/a) (M—Ej /a?) (—E}/a%); (A.2.2)

pr=16(B*/a?) (Bot-a) (B1tw) (M—Eh/e*+ala)  (a—tl/a* + afa). (A.2.3)

Equating the U values of (A,2.2) and (28), we obtain a relation between A and A, which
reduces with high accuracy to the equation
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A =Aet (A—Ac) 1.
(A.2.4)

The equality requirement of the multipliers y, leads, with account of (A.2.1)-(A.2.4) and
Eq. (28), to the expression

B=[1+48(M—2/a%) aa—?+-doa—* (o 1/a) Jo/@a—9,
Hence, using (A.2.4), and substituting the numerical values of a, § and A¢, we reach Eq.

(20). Putting in Eq. (7) B = e BF(a, 1), we obtain a system in which the inertial and
dissipative coupling are regulated by the independent parametexs a and 8.
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