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1. The study of chaotic oscillations in dynamical
systems has led recently to the development of several
wiversa! models for describing the onset of chaotic be-
havior.! One of these models (here called the Feigen-
baum model) is a generalized nonlinear dissipative sys-
fem with the property that as a certain parameter A in-
creases, a fransition to chaotic behavior occurs via a
hierarchy of period-doubling bifurcations, and the be-
havior becomes completely chaotic at a critical point A,
Ref. 2). The parameter space (the A axis) has a scale~
invariant structure near A —the pattern that describes
the regions of different behavior remains the same if A —
A s divided by 6 = 4.669, Examples of Feigenbaum
gystems include nonlinear dissipative oscillators driven
by a perivdic external signal % Josephson junctions in an
i field ,4 radio-wave oscillators with inertial nonlinearity
{Ref, 5), ete. The simplest example is the model?

T,1= -z}, (1)

where the variable x,, describes the state of the system
at time n,

A patural area for the further development of the
theory would be to usc Feigenbaum systers to construct
more complicated objects and study how chaos develops
in{llem. Tor example, Refs. 6-8 numerically analyzed a
system of two coupled systems governed by equations of
the form (1}, However, the properties of universality and
similarity were not displayed, even though they are pres-
ent for the individual oscillators. We will see that this is
because two-parameter families of systems were ana-
lyzed; to get universal behavior, one must analyze threce-
parameter families.
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It was shown in Ref. 9 that as far as the long-term
behavio£ of coupled Feigenbaum systems is concerned, a
weak coupling introduced in some arbitrary way is com-
pletely determined by two parameters « and g, which in
the terminology adopted there correspond to two types
of coupling A and B. These couplings transform differ -
ently under the renormalization group®: the scaling factor
is a@=-2,503 in one case and b = 2 in the other, The re-
sults in Ref. 9 imply that the parameter space («, 8, v)
for coupled systems has a scale-invariant structure near
the point (0, 0, A.) —the points (@, B, Ay + A and (&/ @,
B/b, A, + A/6) correspond to similar system behavior
with time scales that differ by a factor of 2,

In this note we discuss numerical calculations which
yield specific information about the structure of param-
eter space for coupled Ieigenbaum systems and demon-
strate the validity of the above similarity law.
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F1G. 2. The surface («, \) for a system with pure A coupling. The S-sheet
corresponds to in-phase motion of the coupled systems, while the MN-sheets
are out-of-phase. The unhatched regions on the 5- and N-sheets describe
stable cycles with the indicated periods, The bifuration lines are labeled
by Roman numerals: ) period~doubling lines for in-phase cycles; 1I) peri~
od-doubling lines with soft generation of a nonsynchronous cycle (5) along
viliich the S~ and N-sheets are attached; I1II) edges of the S-sheet at which
a jump occurs to an N-sheet; [V) edges of N-sheets at which a jump to the
S-sheet takes place; V, VI) fold lires on the N-sheets; Vi) Hopf bifurca-
tion line (the rotation numbers of the associated quasiperiodic attractor are
indicated alongside). The configuration repeats on a smaller scale inside
the dashed rectangle (the orientation relative to the horizontal axis also
changes).
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FIG. 3. Boundaries on the stable regions for in-phase 2M-cycles on the sur-

face (c, B, A), where B =c|A—2 | log 55. ).

2, We will analyze the following system of two iden-
tical symmetrically coupled systems governed by equa-
tions of the form (1):

Ly =h— i+ o (T~ Y,) - (= — Vi) @)

Yas1 =" — yi-b e (¥ — ) + p (45 — z3),

where the parameters ¢ and u specify the coupling, In
terms of the variables ¢, = (X, +yp)/2 and ny = *,
yn)/z Egs. (2) become

Naat = —28 (Ex + ) 1, )

where B =1 —2u and & =¢ /(1 —24). ‘Rather than con-—
sidering the set (o, B, A) we will use the set (o, B, A),
where g is defined by

. s
Eapr==h—E2—1i,

B =P (1 — 0.6025a + 0.1018a? — 0.0278a})0-77, (4)

The numerical constants in Eq. (4) have been chosen
so that @ and g agree with their values for type-A and
type-B coupling.’ We will first examine pure A and pure
B coupling.

3. For pure B coupling we have ¢ =0, § > 0. m
this case both of the coupled systems oscillate stably and
in-phage if A < Ao (x, = Ynr np = 0). The oscillation
period doubles at the same values of A as for an isolated
Feigenbaum system (1).

For A > A c.the in-phase motion may become unstable

. 1
if the Lyapunov characteristic exponent10 v (A L- Nnm N

N
21:1\2:,1 of the attractor for (1) exceeds B (Ref. 11).

-l

Thus for A > A, regions of in-phase [0 < ¥(A} < gl and

out-of-phase [y(A) > p) chaotic oscillations are separated

by islands of periodic in-phase oscillations [y (A} = 0,

"windows of stability"?], Figure 1 shows the configuration

of these regions in the g, » plane; note that it remains
unchanged if g and A = A +A are replaced byg/b and
Ag +A/G,

4. Pure A-coupling correspondstog =0, ¢ = 0, It

1072 Sov. Phys. Tech. Phys. 30(9}, September 1985

is helpful to regard the parameter surface (a, vy) as com-
posed of sheets, one of which (the S-sheet) corresponds
to in-phase motion of the subsystems, while the others
{N-sheets) describe nonsynchronous motion. The sheets
are joined along curves, and crossing from one sheet to
another across these curves corresponds to a soft transi-
tion between in-phase and out-of-phase oscillations, The
edges of the sheets which are not joired exhibit "hard
jump bifurcation® from one sheet to another, which is
accompanied by hysteresis, Figure 2 shows the nu-
merically calculated configuration of regions on the {2,
M) surface, The structural similarity is clearly evident-
the configuration in Fig. 2 remains the same if ¢ is re-
placed by /e and A = A, + Aby Ay + A/,

When the line joining the S and N sheets is crossed
from below, a nonsynehronous cycle is generated in which
the phases of the motion of the subsystems differ by a
half-perioed,

Tt M= Yn Yooy =% o0 Ly =k Ttz = T (5)

Figure 2 indicates the period M for several of the N-
sheets,

Each N-sheet contains a swallowtail point'? which is
approached by the fold lines denoted by V and VI in Fig,
2. As'we move clockwise around the swallowtail point,
the attractor [cycle (5)] evolves continuously until line
V1 is crossed, after which the nature of the oscillations
changes abruptly and the newly formed cycle is again
described by (5). For a counterclockwise circuit, the
jump occurs when line V is crossed.

The hatching in Fig. 2 shows where cycle (5) is up-
stable. When the boundaries of the hatched regiong are
crossed, a Hopf bifurcation occurs and a quasiperiodic
attractor forms, -The rotation number w (i.e., the ratio
of the periods of the old and new cycles) is indicated
alongside the bifurcation line, The hatched regions have
a fine structure in which "fingers” of synchronous mo-
tion extend out to points on the bifurcation line for which
w = p/qis rational. Inside each finger the quasiperiodic
oscillations are replaced by a complex cycle of period
Mgq. Chaotic behavior develops as we move deeper into
the hatched regions (cf. also Refs. 6 and 8).

5. Finally, consider the case of mixed coupling,
@ 0,3 < 0. Since it is difficult to sketch the structure
of the three~dimensional parameter space, we will make
do with a brief qualitative description and quantitatively
verify the similarity relations,

Imagine that the B-coupling is gradually "turned on
in a system with pure A coupling. Calculations of the
evolution of the regions on the (@, A) surface show that
for small g the -urface continues to be composed of §-
and N-sheets attached along certain curves, and the over-
all position of the regions on the sheets remains un-
changed, As g increases, fingers of nonsynchronous
oscillations grow upward and terminate in Tregions where
A < As. Inoorder for each subsequent finger to disappear
the parameter § must be doubled,

We will verify the similarity law by examining the
cross section of @, g, A parameter space defined by the
surface B =c|A ~2,|108 6b, where c is an arbitrary cans-
stant. The configuration of the regions on this surface
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should remain the same if 3 and A — A, are divided by
aand 6, respectively (in this case & changes by a factor
of b). Figure 3 plots the stability boundary curves for
inphase cycles of period 2™ in ae™ versus (A —Ag) dm
coordinates for several values of m and ¢, We see that
the points lie on the same curves as m varies,

Thus if we follow a path in (w, 8, A) space along

which A increases, various types of chaotic behavior will
be encountered, depending on the path: 1) there may be
ininfinite sequence of period doublings; 2) a finite num-
ber of doublings may be followed by onset of quasiperiodic
escillations which then break down; 3) an abrupt transition
toout-of-phase chaos may occur after finitely many doub-
lings, The scale invariance cannot be detected by studying
individual paths only — instead, a global analysis of (o, 3,

A)parameter space is required.

”Equatlons (3), {4) show that the B coupling tends to make the states of
theindividual subsystems approach one ancther If and only if 8> 0; p< 0
can cecur only if amplification is present in the coupling channel, which

we do not consider here.
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