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1. It has been established that simple nonlinear oscil-
latory systems can demonstrate chaotic dynamics in the
absence of any kind of external random perturbation. Sig-
nificant progress has recently been made in understanding
this phenomenon. This progress is based on the study of
the laws of transition from regular behavior to chaos or to
a variation of the parameters of the system.!™ The eriti-
cal phenomena (i.e., the phenomena near the transition
point) are associated with large time scales, which greatly
exceed all the other characteristics times of the system.
As a result, the critical phenomena have the properties of
universality and similarity, which are determined only by
the qualitative class of the transition, and not by the de-
tailed form of the equations of the system, which is as-
sociated with the local-time features of the dynamics.

The most thoroughly studied type of critical behavior
corresponds to the order —chaos transition that takes place
by a sequence of temporal period-doubling bifurcations of
a motion.! The simplest example of such a system is the
one-dimensicnal recurrence mapping

xn+1=l")\x;21. (1)

where x, is the variable that defines the state of the sys-
tem at the discrete time n, and A is a parameter. The
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critical value of the parameter for the system (1) is Xq=
1.40116. The main property of similarity of critical phe-
nomena consists in the following: when A approaches the
critical point, §=4.6692 times a regime is realized in the
system that is similar to the initial one, but with a doubled
time scale (both at A< A, and at A> AJ). In other words, the
partitioning of the A axis into regions of different regimes
has the property of scale invariance, and transforms into
itself when the scale is changed with respect to the point
Ac by a factor of 6. Diverse systems that are described
by differential equations, such as the nonlinear dissipative
oscillator excited by an external period force,® at thetran-
sition to chaos demonstrate an analogous behavior, which
is described by the same universal scaling constant 3. As
a result of the universality of critical phenomena, it is
always possible to use model (1) to describe any system
near the transition point to chaos by period doublings,

if the appropriate meaning is given to the variable x; and
the parameter A.l

In this study we report the discovery of a new type of
critical behavior in a system consisting of two subsystems
(each of which demonstrates period doubling) that havea
one-way coupling between them (the first subsystem acts on
the second subsystem, but the second subsystem does not
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influence the first subsystem). Recently, similar models
have attracted attention in connection with the investigation
of turbulence that ‘developa downstream.®

2. We consider the following model system for coupl-
ing mappings:

Kaop = U= Mxh gy =1 = Aavh = Be(xa), (2)

where x and yp are the variables that characterize the
states of the first and second subsystems, respectively;

A and A, are the controlling parameters of the subsystems;
and B is the coupling parameter. The function ¢{x) char-
acterizes the way in which the coupling is introduced, and
inthe simplest case can be chosen to be x or x2.

Figure 1 shws the numerically obtained region con-
figuration in the (Ay, A) parameter plane for the case
#x)=x and 8= 1/4. As the parameter A is increased, the
first subsystemn exhibits a Feigenbaum sequence of period-
doubling birfurcations of the stable cycles. The cor-
responding bifurcation lines are shown in Fig. 1 by vertical
lines. For small values of the parameter A, the period of
motion of the second subystem is the same as that of the
first subsystem (forced oscillations). ¥ A, is Increased at
fixed A, a sequence of period-doubling bifurcations will
be observed in the second subsystem. The bifurcation
values of A, depend on A, (the curves in Fig. 1). The num-
bers inside the different regions indicate the period of the
osclllations in the second subsystem, and the hatching in-
dicates the onset of the chaos.

Figure 1 shows that the parameter space of the sys-
tem has a scale-invariant structure: the whole pattern of
regions which is shown is reproduced nn a smaller scale
inside the rectangle formed by the dashed lines. The cor-
responding change of scale along the A axis is proportional
to the Feigenbaum constant §,=4.6692, and the change of
scale along the A, axis is determined by a new constant,
which we numerically find to be §,=2.39.

We call the symmetry center of the pattern of the
regions in the (A4, A, plane the bicritical point. At this
point the system has a countably infinite set of (unstable)
cycles of period 2N, The elements of the cycles that ap-
proach zero in the first subsystem vary in proportion to
a;", where @y =2.5029 and in the second subsystem they
are proportional to a;N, where o ,=—1.52. The multipliers
of the 2N cycles are the same at large N: a small per-
turbation of the variable x varies by pu;=-1.6012 times in
a period of the cycle, and that of the variable y varies by
§y==1.176 times.
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FIG. 1. Parameter plane for {2) mapping (2} and for (b) coupled nonlinear
oscillatery contours. B is bicritical point.
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FIG. 2. Oscillation spectra {n the two subsystems at the critical point:
Above — calculadon for mapping (2); below — experiment on coupled non-
line ar oscillatory contours.

The attractor of the system at the bicriticalpoint cor-
responds to the motion with an infinite period. Figure 2
shows the corresponding os cillation spectra of the subsys-
tems. The first subsystem exhibits a classical Feigen-
baum spectrum with a gradient of about ;=13.6 db between
the spectral components of each successive level. In the
spectrum of the second subsystem, the ratio between the
levels of the subharmonics is completely different and is
characterized by the constant y,~ 6 db.

We note that the position of the bicritical point on the
line »;=1.40116 depends on the magnitude of the coupling
(the parameter 5) and on the form of the smooth function
@ x), but the scaling constants introduced above do not
depend on them. This circumstance allows us to assume
that &, oy ny» and vy, are universal just as the Feigenbaum
constants 6;, 4, 4y and y;. Consequently, these constants
should appear in all cases in which a period-doubling sys-
tem affects another such system, irrespective of whether
these systems are described by mappings or differential
equations. In order to check this proposition, we carried
out an experiment on a specific system of coupled non-
linear oscillators (oscillatory contours) excited by an ex-
ternal periodic force.

3. The system under mvestiga{:ion consisted of two
identical nonlinear capacitances of the p—~n junctions of
two KP903 transistors. The coupling between the contours
was realized by using a special amplifier such that the first
contour influenced the second contour, but the second con-
tour did not influence the first contour. Each contour was
excited by in-phase sinusoidal signals (from an external
oscillator) whose amplitudes could be regulated indepen-
dently.

As the amplitude U of the external force was increased
each contour exhibited, in the absence of a coupling, a
sequence of period-doubling bifurcaticns, which culminated
In a transition to chaos at a certain critical value U=U,.

In the region U < U, it was possible to clearly Identify five
bifurcation doublings, which correspond to the appearance
of oscillations with a period of 32T, (T, is the period of the
external force). As U was increased in the region U U,
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the discrete spectral lines disappeared gradually (with
regions of continuous spectra forming in their place) in the
order opposite to that in which they appeared. We also
observed a "window of stability? f.e., a band In the region
Us> U In which perlodic oscillatory regimes were realized
with periods of 3+ 2NT,, 5+ 2NT,, etc. The evolution of the
oscillation spectrum as a function of U, and also the esti-
mates of the scalling constants, correspond to the results
of Feigenbaum's theory.

The introduction of a coupling did not produce any
changes in the oscillations of the first contour. The dyna-
mics of the second contour was determined by the parame-
ters U, and U,, i.e., the amplitudes of the external force
on each of the two contours, and also by the magnitude of
the coupling between the contours. On the right side in
Fig. 1 we show the experimentally determined regions of
the various oscillatory regimes in the (U, U,) parameter
plane at a fixed value of the coupling. The oscillation
periods are expresded in units of T,. The hatching indi-
cates the boundary"ﬁt which chaos starts. The region pat-
tern obtained in the experiment is in good qualitative agree-
ment with that determined for the model mapping (2), al-
though the expected properties of scale invariance hold
only approximately. This circumstance clearly stems from
the fact that in the experiment the resolving power of the
apparatus allows us to fix a relatively small number N of
period doublings, whereas the universal properties of
similarity are valid asymptotically in N.
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By varying the two parameters U; and U, in the experi-
ment, it was easy to find the bicritical point, whose char-
acteristic property is the transition to chaos in the first
contour for an arbitrarily small increase in Uy, and a transi-
tion to chaos in the second contour for an arbitrarily smal
increase in U,, Here we show the photographs of the specha
of the oscillations of each contour at the bifurcation point
(Fig. 2). These spectra exhibit a remarkable agreement
with the calculated spectra for the model mapping (2). By
varying the coupling of the contours within wide limits, it
was possible to observe the bicritical point, together with
its inherent properties of the signal spectrum, and to ob-
serve the characteristic structure of the neighboring re-
gions of the parameter space.

The results of this study show graphically that the
universality of the laws of critical behavior are expressed
not only in the dynamics of an individual system that ex-
hibits a transition to chaos by period doubling, but also in
phenomena arising from the interaction of such systems.
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