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The simplest case of bicritical behavior arises in a system of two logistic maps with unidirectional
coupling in the point of a parameter plane where lines of transition to chaos in both subsystems meet.
We develop a renormalization group analysis of the bicriticality and find the corresponding fixed point
universal function and constants featuring the scaling properties of the second system while the first one
is in the Feigenbaum critical state. Fractal properties of the bicritical attractor and its quantitative
characteristics (o-functions, f{«)-spectra, generalized dimensions) are considered. It is shown that the
bicriticality may be observed as well in lattice models of flow systems consisting of more than two

coupled elements.

1. Introduction

One of the promising roads to understanding spatio-
temporal chaos such as fluid turbulence consists in the
construction and investigation of coupled map lattices
recently introduced as simple but pithy models of
spatially extended systems by several authors [Kaneko,
1984, 1985; Kuiznetsov & Pikovsky, 1986; Crutchfield
& Kaneko, 1987; Waller & Kapral, 1984, Aranson et
al., 1988). Most of them are on lattices consisting of
Feigenbaum period-doubling maps. Particularly, lat-
tices with unidirectional coupling were proposed for
the modeling of turbulence in flow systems [Kaneko,
1985 Aranson et af., 1988]. Such lattices may alsoc be
easily constructed in electronics [Anishchenko et af.,
1986; Bezruchko et al., 1986]. A number of phenom-
ena have been discovered in systems of this class,
among them are spatio-temporal chaos, spatial period
doublings, saturation of attractor dimension down the
flow, observations of the generation of moving domain
walls by small random excitation and so on. Also, a
new type of non-Feigenbaum critical behavior was
found in an electronic system of two periodically
excited nonlinear LC-circuits connected through a
special amplifier securing the unidirectional character
of coupling [Bezruchko et al., 1986]. It is realized when
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one simultaneously leads both subsystems just onto a
border of chaos by their two control parameters. This
point of parameter plane corresponds obviously to the
onset of hyperchaos [Rossler, 1979]. It was called &
bicritical point because of the natural analogy with
phase transition theory. This usually denctes a point
where two different lines of the second-order phase
transitions meet.

The simplest model describing the bicriticality is a
system of two logistic maps with unidirectional cou-
pling:

- Bx>

xn+l=l_‘;'xr2:’ yn+l=l_Ay3! "ot (]')
where x and y are dynamical variables of two coupled
systems, A and 4 are control parameters and B is a
coupling constant.

In this work we present the renormalization group
analysis of the bicriticality giving a foundation of
quantitative universality for this situation, discuss the
structure of parameter space and power spectra, con-
sider the fractal structure of the bicritical attractor,
introduce o-functions, f(x)-spectra and generalized
dimensions describing scaling properties for bicritical-
ity and show a possibility of its realization in more
complicated lattice systems.
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2. Renormalization Group Analysis

The ideas of the renormalization group (RG), univer-
sality and scaling appeared first in quantum field
theory and phase transition theory. Beginning with
Feigenbaum's works {Feigenbaum, 1979, 1980] they
were introduced into the nonlinear system analyses
and have promoted the better understanding of the
dynamics at the onset of chaos through the period
doubling sequence, intermittency and quasiperiodicity.
Briefly, the contents of RG method is as follows, Given
a dynamical system evolution operator over a definite
time interval, one can build the evolution operator
over somewhat greater time and then rescale the
dynamical variables o make the resultant operator as
similar to the initial one as possible. This 1s just RG
transformation. It may be repeated to obtain the
evolution operator over greater and greater times. It
may then appear that, for certain values of control
parameters for the considered dynamical system, the
evolution operator becomes invariant under the RG
transformation. In other words, it is a fixed point of
RG transformation. It corresponds to some critical
situation where universality and scaling are just valid,
Universality is related to the fact that the operator is
defined by the RG transformation structure rather
than by the initial evolution operator. The existence of
scaling is associated with the presence of greater-than-
unity in-modulus eigenvalues of RG transformation
linearized at the fixed point. Each of the eigenvalues is
related to the essential parameter of the system and
gives the scaling constant along the corresponding
direction in the parameter space.

Let us apply the technique in the case of Egs. (1).

Denoting the right sides in Eqgs. (1} through gy(x}
and fi{x, p), perform the mapping twice and change the
scales of x and v by some factors ¢ and b, We then
obfain

Xps2= agg(go(x,,/a)) »
Yuu2 = lgixfa, fxfa, v /B0 .

(2)

The right hand functions we denoie now as g,(x) and
Ji{x, ¥). Repeating the procedure we come to recurrent
RG equations

[ |(X) = agm(gm(xfa)) »

S ) =8 (g, (xia), f(xla, yibyy . (3)

The bicritical behavior must correspond to a fixed
point of it;

g(x) = aglg(xia)y, f(x,))=bf(g(x/a), f(x/a, yib)) .
(4)
The functions g, fand factors @, b may be obtained by
the solution of Eqs.(4). Under the normalization
condition, g(0)=1, j(0,0)=1, we have a=(g(1))"'
and B=(f(1,10)"".

The first of Egs. (4) is tndependent on the second
one and its solution is a known Feigenbaum function
g(x) with a= —2.502907 [Feigenbaum, 1979, 1980].
The numerical solution of the second equation was
undertaken by expansion of the unknown function
JSix, ¥) through even Tchebyshev polynomials:

FOu0 =D D Co Ty To(y), xyel-1,1].
Lid M (5}

Substituting it into Eqs. (4) and using the known
polynomial representation of g(x) [Feigenbaum, 1979,
1980] we replace the functional equation by a set of
M x N nonlinear algebraic equations for C,,,. This
procedure is based essentially on the property of
orthogonality of Tchebyshev polynomials on a net
formed in the (x, y)-plane by roots of the product
Tone o 1 ()T, ()). The solution was obtained by the
Newton methad. The values of Af and A achieved in
our calculations were 10 and 14, The poiynomial
approximation found for f(x, v) is presented in the
Appendix with an accuracy up to the 6th digit and the
plot of it is shown in Fig. 1a. The best evaluation of the
scaling constant is &= 1.505318159.

The next step consists of investigating the evolu-
tion of small perturbations of the fixed point g(x),
S(x, y)under RG transformation. We suppose that the
perturbations do not violate the unidirectional nature
of coupling. Under this condition there are two essen-
tial unstable directions of the fixed point. The first
one corresponds to the perturbation removing the first
system from the critical point and is associated with
the known Feigenbaum’s eigenfunction #{x) and eigen-
value &, =4.66920. Ancother direction implies the
perturbation of only the second subsystem: f£,.(x, y) =
SO, ¥y +8"plx, v) and leads to the eigenproblem

Selx, y) = b flg(xla), / (x/a, yIB)) p(x/a, yib)
+p(gxia), f(x/a, y/b))] . (6}
Using the above representation of function (5) we

have solved it by straightforward iterations and found
the ecigenfunction ¢(x,y) (Fig. Ib) and eigenvalue
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Fig. 1. Plots of the universal functions f'(x, ¥} and @(x. ») found

by solution of the RG equations (4} and {6).

8, = 2.39272443, We point out that new constants b
and J, are in good agreement with earlier empirical
evalvation of scaling factors (b= -1.51, d, = 2.39)
[Bezruchko et af., 1986].

The map

Xpe1 = g(x), Yain =J(-(‘xn‘yn) '

describing the long time dynamics exactly in the
bicritical situation has a fixed point x, = 0.54931, y, =
0.52807. Then it follows evidently from RG equa-
tions (4} that a period-2 cycle exists, one of elements
being x,/a, y./b. It means, furthermore, the existence of
a period-4 cycle with the elements x,/a’, y,/b2 and so
on ad infinitum. All these cycles are unstable and have
the same multipliers found to be equal u,=g"(x,) =
- 160119 and u, = /i (x,, ».) = - 1.17886.

The last property is useful for the exact calculation
of bicritical points for the model map (1). In the first
system we take 1=4,.=1401155 for g,, going to g.
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Then we find, by Newton s method, the cycles of (1)

with periods 2% and y, = I'I1 { — 24y,) and select a value
of A=A, to make y equal to the universal constant
- 1.17886 for sufficiently large k. So (4., 4.) will just
be the bicritical point. In Fig, 2a the calculated depen-
dence of multipliers ¢, on 4 and k is shown for
B =0.375. One can see an expected intersection of all
multipliers with large & in the bicritical point. From
calculations we find, in this case, A4, =1.124981403.
Figure 2b shows A, versus B.

Notice, that the system under consideration has, in
genteral, a lot of attractors, Indeed, in the case of B =0

a.5

™y

-1.178

0.9

0 B 1
(b}
Fig. 2. The multiplier g, of period-2, 4, 8, 16 cycles versus 4 for

imd. =t 4011552 and B=0.375 (a) and the bicritical line in the
(A, By-plane (b).
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it breaks up into the two uncoupled period-doubling
systems. If they both have stable 2*cycles then the
composed systerm has 2° stable states distinguished by
the phase shift between subsystems, Multistability is
preserved after coupling, at least while its value is
small enough. In this report we discuss in detail one of
the attractors whose basin include the point x=y <=0,
Bicritical situation may be found for other attractors
too, the scaling constants being ihe same. It is an
effective demonstration of the bicritical dynamics
universality which is proved in the framework of the
RG approach.

In conclusion, we must emphasize that the presence
of bicriticality is strongly connected with the unidirec-
tional character of coupling. It may be shown that the
introduction of contradirectional interaction destroys
the bicriticality because of newly appearing unstable
directions of the RG fixed point.

3. Scaling Properties of Parameter Space
Near the Bicritical Point

Consider two points of parameter space A=A+ Al,
A=A, +AA and 2 =7.+ A8, A=A+ AA/3, with the
same B's. It is obvious that AL contributes only to the
perturbation of the RG fixed point associated with
Feigenbaum’s eigenfunction h(x) and ecigenvalue 3
and that A4 contributes only to the perturbation
corresponding to the eigenfunction ¢(x, y) with cigen-
value &,. So the iterations of the RG transformation
(3) in two considered points will accordingly lead to
the same map after m and m + | iterations. Thus, the
dynamical regimes in these points will be similar with
characteristic time doubling in the second case.

In Fig. 3 the structure of the (i, A)-plane is shown
for B=0.375. In the vicinity of the bicritical point,
there is a complicated configuration of regions includ-
ing periodical regimes (clear zones), chaotic regimes
with one of the Lvapunov exponents

M
Ag=tim LD (2251, A, -tlim AZln 241
i-1 l-l
(7)

positive (horizontal and vertical dashes) and hyper-
chaos with A,, A.>0 (doubled dashes). For the
system with unidirectional coupling the presence of
hyperchaos is tested easily since each Lyapunov expo-
nent associates with definite subsystem [Aranson et al.,
1988].

For evidence of scaling one may compare three
pictures (Figs. 4a, b,c) showing the region of A, > 0. In

i
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Fig. 3. Configuration of dynamical regimes in the (i, A4)plane for
B=0.375. Clear zones correspond to periodic states, and the
numbers arc for cycle periods. Horizontal dashes correspond to
chacs in the first subsystem only, vertical — chaos in the sccond
subsystem, doubled dashes — hyperchaos.

Figs. 4b, ¢ the picture is presented under onefold and
twofold magnification by factor 4, for the l-axis and 4,
for the 4-axis. One can see that each successive picture
reproduces the previous one with an accuracy increas-
ing with the depth of resolution.

1.1

1,40 A
(a)

Fig. 4. Regions of positive Lyapunov exponent A, of the second
system at different scales: the magnification from onc picture 1o the
ncxt is determined by the factor J, along the A-axis and by J, along
the d-axis.

1.50
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Let us consider in more detail how the dynamies is
changed when we move upward in the parameter plane
along the line 1=4, through the bicritical point. The
plot of Lyapunov exponent A, versus the parameter A4
is shown in Fig. 5a. The Lyapunov exponent is nega-
tive for 4 <A, and becomes positive for 4> A,
excluding some windows of regularity. So the bicritical
point is really a border of chaos in the second system
when the first one is in the critical state. Also, the
bifurcation tree is presented in Fig. 5b. This is the plot
of y’s running during long time dynamics of the map
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{1) (after the exception of transients) versus the
parameter 4. Already for 4 < A, each branch of the
bifurcation tree has a fine structure reproducing the
structure of Feigenbaum’s attractor. It is caused by
forcing the second system with the first one and can be
seen under suitable magnification. An evolution of this
structure when A4 goes to A, is smooth. Exactly in the
point A4, a set with new fractal properties is formed
which we shall discuss further.

Scaling properties of the Lyapunov exponent and
bifurcation tree are illustrated by a comparison of the
initial pictures of Figs. 5a, b with its magnified parts
shown in Figs. 5c, d, ¢, f. The change of scale along the
A-axis is determined by the factor §, = 2.39272, for the
A-axis it is equal to 2 and for the y-axis to b= 1.50532.

So we really observe the expected scaling near the
bicritical point, and can now turn to a discussion of the
dynamics exactly in this point.

4. Bicritical Attractor

We shall see now that the attractor in the bicritical
point is a very interesting example of a multifractal set
in a two-dimensional phase space (x, »). To under-
stand its geometric nature we recall the known proce-
dure for constructing Feigenbaum's attractor. Given

=0 one iterates the map x,,, , = 1 - i_x2 and obtains
a sequence X, X, X3, ... . Then the Oth level of the
construction is a segment [x;, x5}, the lst level is a
unification of two segments {x,, x,] and [x», x,], the
2nd level is a unification of four segments [x;, x<],
[xa. %], [x3, x4], [x4, Xg] and so on. Each set obtained
al some step of the construction contains all the
successive sets in itself. So the limit object is just
Feigenbaum’s attractor.

To construct the bieritical attractor, we begin from
the initial point x, =0, 15 =0 and find a sequence of
pairs (x;, ), (x2.03), (x4, ¥3)... by iterations of
Egs. (1). The Oth level of the construction will be a
rectangle with opposite vertices in (x,, ;) and (x5, y,).
We denote it as

g ={{x), 1), (x3. 1)

The 1st level will be presented by two rectangies with
opposite vertices it (x;, ¥,), (x3, y3)and (x,, ¥7), (x4, va):

I = [y, yy), O, Y3 U0, 1) (. ¥ -
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Fig. 5. Lyapunov exponent A, versus 4 and bifurcation trees p versus 4 for 1= 4,=1.4011352, B=0.375. The next pictures present the
magnified parts of the previous ones inside the rectangles shown. For the best evidence of scaling only the points for each 2nd and 4th temporal

steps are shown at (d) and (f).

Then we continue the construction shown in Fig. 6. On
the sth level we have

an
l-[n = U] [(xjs yj)s {xg'+2"'l y1'+ 2")] 2 (8)

giving the bicritical attractor in the limit of n — 0.
Let us evaluate now the Hausdorff dimension of this
set. At the nth level of construction it is approximated
by 2" rectangles of size /;x L;. For large n these
rectangles stretch along the y-axis and so L, >/, (see
Fig. 6 and further discussions of ¢, and &, functions).
A number of squares of size /; needed for covering the
rectangle is given by L/l Following the traditional
definition of the Hausdorff dimension. [Farmer, 1982],
we consider a sum of /7 over all squares and rectan-

gles:

2n
Sﬂ = z (Lrﬂr} ' !:D s
I=1

and choose the value of D to provide for S, to be finite
in the limit of # — «. Then D will be the Hausdorff
dimension of the set. By numerical calculations we find
D= 1.0794.

For global characterization of scaling properties
of the bicritical attractor, we introduce two functions

o, and o, according to Feigenbaum’s proposition
[Feigenbaum, 1679, 1980]:

x;n - x;n+N
g (m/2N) = r —x

m = Xm e N2

PR (%
Jy(m,QN)=M,
m = Vm N2

where m, N=2"—w, Xx,,, ¥, and x,, »,, are the
elements of the period-N and - 2N cycles of the map
(1) in the bicritical point. These functions, as numer-
ically calculated. are shown in Fig. 7. Because of the
independence of the dynamics of the first system on
the second one, the function o, is just the known
Feigenbaum function. On the contrary, g, is a new
universal function for scaling properties of the -
projection of the bicritical attractor. The fact that
|o.l> |o,} infers that the splitting distance of trajec-
tories along the y-axis decreases more slowly than
along the x-axis under an increase of resolution of the
attractor structure. o, as well as o, has discontinuities
in all binary rational points of m/2”. We note that this
fine structure is more noticeable for ¢, than for o .
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Fig. 6. Construction of a bicritical attractor in the (x, }) plane,
B=0.375.

It is known that these relations exist for Feigen-
baum’s attractor:

o (+0)— Va*, a(1/2-0y—~1/{a]|,

a= -2.50291 . (10}
For g, we find, similarly,
a,(+0) =167, o (1/2-0)—~1/|b},
b= -1.50532 . (11)

Roughly one can represent o, and g, by two steps of
levels (10} and (11). It corresponds to an approxima-
tion of the attractor by an object whose projections
onto the coordinate axes are two-scale Cantor sets
[Halsey er al, 1986] with scale parameters 1/a, l/a
and 1/b, 1/b%. For Feigenbaum’s attractor this approx-
imation leads to useful relations for the power spec-
trum, dimensions, f(a)-spectrum and 50 on. A simple

ull ul

8.5
(a) it

Fig. 7. Plots of the functions o, and ¢, which determine the global
scaling properties of the x- and y-projections of the bicritical
attractor.

generalization of it for the p-projection of the attractor
will be discussed further.

In Fig. & the numerically calculated power spectra of
x and yp variables in the bicritical point are shown, The
first one is an ordinary Feigenbaum’s spectrum. The
second one is a specific bicritical spectrum character-
ized by non-Feigenbaum relations between subhar-
monics of distinguishable levels. Using the above
two-scale approximation with scaling factors (11) one
obtains the next recurrent relation for spectral inten-
sities of y:

1+ &% +2b cos (mew/2)
S
4p*
S(ew/2), sign -,
S(1 -w/2), sign= 4™

()
a2

»

analogous to the known result for the Feigenbaum
spectrum [Huberman & Zisook, 1981; Nauenberg &
Rudnik, 1981] with a changed to . We find that (12)

bog S(u) Log S(w)

W —=—
{a) (b)

Fig. 8. Power spectra generated at bicritical point by the first {a)
and by the second (b) subsystem.
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is in good agreement with Fig. 8b and gives the mean
difference between neighboring levels

AS=10log(1/4b* + 1/4b%) ~ - 8.0 dB .

This value is essentially smaller than the level differ-
ence in Feigenbaum’s spectrum which is - 13.4 dB. So
the high order subharmonics are higher in level in the
y-spectrum in comparison with the x-spectrum.

Let us now turn to the evaluation of the spectrum of
scaling indices [ («). We shall support, here, a view that
this spectrum is an attribute of a signal gencrated by a
“*black box” rather than a charactenstic of the bicrit-
ical attractor. We have two signals, x, and y,, and
confine ourselves, here, by its independent processing,
Using the same procedure as proposed earlier for the
Feigenbaum case [Halsey er al., 1986] we define the
partition function at the nth level of resolution

-

T,= > o0l (13)
=1

where p; = 1/27, L= {x; - X; . 2#| OF [¥i=Vi,or|s X ¥s

are sequences generated by (1) at the bicritical point

with initial condition x,, yy = 0. Then we demand that

I',, be finite for n — oc:

"
20

i=1

. (14)

L
q_n £

Following [Halsey e al, 1986] we obtain the f(a)-
spectrum in parametric form

dr

tx=d—q, f=aq—1'. (15)

In two-scale approximation, the sum I',,, may be
obtained from T, by changing each term p%I° by two
terms:

1.6

lal* £ 1ai” p*

for x and
22 r 29 r
T g 2t g
LN _p+_|b| P for y .
290 2 r

So we have T,,,=(|a|*+ |a|?*D 2", for x and
T,o1=(]bj"+|b|**)27 9T, for y. Then we obtain,
accordingly, g=log,({ai®+ |a|?") and g= log, (|h|®
+ |b|%), and find a and f from (15) analytically.
Figure 9 shows the f{a)-spectra generated both by
x and y. Dotted lines indicate two scale approximation
while solid lines show accurate numerical calculations.
For the first variable x we have, of course, a traditional
Feigenbaum’s form [Halsey er al, 1986], but the
second spectrum is specific. It is disposed on an
interval of a’s from 1/log,h* = 0.84736 to 1/log, | b| =
1.69472 and has an extremum at f= D¢ = 1.1714.
We call this value the fractal dimension of the signal ».

1.3

¢ 1 o 2

Fig. 9. Plots of f{a)-spectra generated by both subsystems in the
bicritical point. The spectrum for the first system is denoted by F
{“Feigenbaum”), the second one by B (“bicritical™).

p{0>=1.1714

D(1)=1.128%

B23=1.0919

0.8

-1z

q’ 12

Fig. 10. The generalized dimension D{g) of signal y at the bicritical point.
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Power specira generated by the three systems with unidirectional coupling Eq. (16) in different situations realizing the bicriticality

(see textp: apd=1, 4=1.272008, 8-0.25, C-1,128102, D-0.375 b)i=1.401155 4-1.124981, B-0.375, C=0.6, D=0.375; c) A=

1.401155, 4=0.8, B=0.375, C=1.179791, D-0.375.

One could expect that this is the Hausdorft dimension
of the y-projection of the bicritical attractor. However
this is not true because of the interweaving of y-projec-
tions of different elements for the construction of the
sel (see Fig. 6). It is connected also with the fact that
D} > 1. Inspite of it the value D§” may be considered
as some kind of dimension reflecting scaling properties
of y’s. With similar reservations, we may define the
whole set of generalized dimensions DY’ = 7/(1 - )
[Halsey ef al., 1986]. The plot of them is shown in
Fig. 10, where some important particular cases are
pointed out by corresponding numerical values.

5. Lattices of Three and More Elements

The bicriticality is a widely spread universal type of
behavior of flow systems when two or more control

parameters are taken into account. One ¢an meet it not
only in the system of two coupled elements. For

example in a system of three elements
42 2 2
xn+l=1_Mn! yn+1=l"Ayn“Bxﬂ’

1-CZ2- Dy’ |

z {(16)

LEN|

we can secure the next bicritical situations:

1. By taking A < A, for the first system, which would
demonstrate some stable cycle, and selecting 4 to
realize the Feigenbaum’s critical sitwation in the
second system, and C to obtain bicriticality in the
third system. This situation may be represented
by the diagram

P—oF—B,

where P denotes the periodic behavior, F — the
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Feigenbaum’s critical dynamics, and 8 — the
bicritical dynamics;

2. By taking 4=4_. and A = 4, for given B and not
large C and D. Then the second system will be in
the bicritical state while the third one accom-
plishes the forced movement with scaling prop-
erties intrinsic to bicriticality:

F—8—B;

3. For 2=/, and not large A and B, we have the
Feigenbaum critical state in the first system and
an induced state with the same scaling properties
in the second one. So, by suitable selection of ¢
for given D one can obtain the bicriticality in the
third system:

F—-F—B.

Figure 11 presents the power spectra of subsystems in
these three situations. Comparing them with standard
Feigenbaum and bicritical spectra (Fig. 8} supports
the listed diagrams. The number of possible variants
becomes greater with increasing number of lattice ele-
ments. For instance the states

P+P—+F—>B, F—+F—>F—+R,
P+F—~F—B, F—~F—+B—+8,
P—-F -B—~B F—+~B—+B—+E,

may be realized in the lattice of 4 elements and so on.
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Appendix

We present here the polvnomial approximation of the
function f(x, ) found by numerical solution of RG-
equations (4) with precision up to the 6th digit:

SOx, ) =1-0.85552091° - 0.4327171y* + 0.08840423° + 0.16850345° - 0.01 11849y '% + 0.0397315y"2
-0.1233151v" + 0.0863301)'° - 0.0246471y'® + 0.0024956y°° + x*[ - 0.5969284 — 0.3038808y"°
+0.0919502y" + 0.1862281° - 0.0217993y* + 0.068305y' ~ 0.2391765y'* + 0.1939734)"*
-0.0641303y'% + 0.0076191y ] + x*] - 0.0318577 + 0.0570438y° + 0.085061)* - 0.0180487y°
+0.0402246y° - 0.19793413'% + 0.1952681y'* - 0.0764447y"* + 0.0107490y*°] + x°[0.01751 15

+0.0184702)% - 0.0091169y" + 0.0094340v* - 0.0920556y% + 0.1171801y'° - 0.0557729y"?
+0.0093699y '] + x5[0.0009261 - 0.0029286y% - 0.0001536)* — 0.0254408y° + 0.0456733y°

~0.0273932y'% + 0.0055839y "*] + x ' - 0.000446 1 - 0.0004062)° - 0.0038934)* + 0.0116841"
- 0.0093343y% + 0.0023675y "1+ x [ - 0.00001 11 - 0,0002252y? + 0.0018605y* - 0.0021846y°
+0.0007198y%] + x " - 0.0000065 + 0.0001533y* - 0.0003310y" + 0.0001534y°] + x *[0.000006 1
- 0.0000270y” + 0.0000212y™ + x"*] - 0.0000003 + 0.0000015y7] ,



