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Universality and Scaling in Two-Dimensional Coupled Map
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S. P. KUZNETSOV
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Abstract — The dynamics of two-dimensional coupled logistic map lattices near the onset of chaos is
investigated using the concepts of renormalization group, universality and scaling. Two versions of
RG approach and formulation of scaling properties are considered. The first one deals with lattice
effects and the second one describes continuous limit behaviour. The examples of spatial patterns
and spectra demonstrating both types of scaling are discussed.

INTRODUCTION

Coupled map lattices (CML) were introduced by several authors as simple models
describing many peculiarities of the complicated dynamics of spatially extended systems
(see. for example [1-12]). The most popular class of these models includes the lattices
constructed by cells demonstrating a period doubling transition to chaos when some control
parameter is varied. This kind of local dynamics is characterized by universality and scaling
being explained with the help of the renormalization group (RG) approach by Feigenbaum
[13, 14]. Due to the existence of universality and scaling for individual cells, one may also
expect the appearance of some analogous properties for spatially extended lattices.

Various aspects of this idea were discussed earlier by Kuznetsov [4, 6], Kuznetsov and
Pikovsky [5], Aranson et al. [8] and Kook er al. [12] for one-dimensional CMLs. It is
evident that increasing the spatial dimension of the lattices is a natural and necessary step
for the construction of more realistic models of turbulent states. The computer investiga-
tions of two-dimensional CMLs were undertaken by Kapral [3], Oppo and Kapral [7], Bohr
and Christensen [9] and Kaneko {10, 11]. They discussed in detail diverse phenomena of
two-dimensional pattern dynamics, but did not develop the renormalization group ap-
proach. Nevertheless, this method seems to be necessary for the understanding, classifica-
tion and systematization of the phenomena observed in CML dynamics. Particularly, it
gives an explanation of scaling property dependence on the form of coupling terms. This
paper is devoted just to the investigation of the two-dimensional CML near the onset of
chaos in the light of RG, universality and scaling concepts.

In general, the content of the RG approach is as follows: beginning with the evolution
operator of the system for one time step we then construct the evolution operator over two
steps. Performing some variable changes, we attempt to make the new operator as similar
as possible to the old one. This procedure of RG transformation may be repeated many
times giving the sequence of evolution operators over increasing temporal intervals of 4, 8,
...2" ... steps. It may occur that there exists some critical point, line or surface in the
system parameter space where the above operator sequence converges to a regular limit
operator, this being the fixed point of the RG transformation. This operator must be
universal because it is defined by properties of the RG transformation rather than by the
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concrete initial evolution operator. Furthermore, the scaling properties of the parameter
space structure near tne critical situation are determined by the eigenvalue spectrum of the
RG transformation linearized near the fixed point operator. Each essential eigenvalue with
modulus larger than unity is responsible for the appearance of one essential parameter of
the system. This eigenvalue gives a scaling constant for some direction in the parameter
space. The number of such eigenvalues defines the codimension of the critical situation.
This is just a number of parameters in a family of systems permitting this critical behaviour
to be typical.

Two versions of RG approach will be proposed.

The first version deals with lattice effects. In this case, the evolution operator of an
uncoupled map lattice at the onset of chaos is examined as the fixed point of the RG
transformation. The second variant of RG approach works in the situation when the
characteristic scale of spatial patterns is much larger than the lattice step. The procedure of
RG transformation is accompanied now by rescaling the spatial variables by /2. The fixed
point operator relates to a medium obtained in the continuous limit from the lattice with
particular, dissipative type of coupling. The computer results are presented illustrating two
types of scaling corresponding to both versions of the RG approach.

LATTICE RENORMALIZATION GROUP ANALYSIS

We begin by considering a two-dimensional square lattice of uncoupled identical cells
governed by the evolution operator F

Foloox(y ).y = Lo fOXGL D), - o), (1)

where j, j are the spatial indices of the cells. We assume that the local map f belongs to
Feigenbaum’s universality class and demonstrates period-doubling transition to chaos under
the increasing control parameter A. The accumulation point of period-doubling bifurcations

will be denoted by A. (the critical value).
Let us define the RG transformation R as a simultaneous application of Feigenbaum’s

doubling procedure {13, 14] to all maps forming the lattice:

R (oo fxi, ), o b = o af(fa (o ), - (2)

where a = —2.5029 ... is the known universal scaling constant. While we consider the
uncoupled lattice, the multiple repetition of procedure R at the critical point A, will give us
the operator sequence F, = R"F converging to the fixed point of the RG transformation
R. This is the limit operator

G {oox(, ), . y—=4{ .., g, ...} &)}
Here. g is Feigenbaum’s universal function obeying the functional equation g(x) =

ag(g(x/a)).

Now consider a small perturbation of the fixed point G, maintaining the translation
lattice invariance and including the coupling between the nearest-neighbour cells. For the
weak coupling, the contribution of all the neighbours may be introduced into the dynamical

equation additively. So, we have
F=G, +eH: {....x(i, p),...} = { .., gx(i, ))) (4
+e[h(x(i, j) + o(x(i, P, x( — 1, /)) + @(x(, ), x(0 + 1, /)
+@x (i, ), x(i, j = 1) + @(x(i, j), x(i, j + 1), ...},
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where A is the perturbation of individual cells while the ¢ terms introduce the coupling.
Without losing generality, one may consider only the coupling functions @(x, y) satisfying
the condition ¢(x,x)=0. Let us perform the RG transformation (2) with a linear
approximation in ¢. The result may be written in the form of equatlon (4) again, but with
new functions # = Mh and ¢ = M¢. The linear operators M and @ are defined by the

relations

M: h(x)— alg'(g(x/a)h(x/a) + h(g(x/a))], (5)
m: plx, y)— alg'(g(x/a))p(x/a, y/a) + ¢(g(x/a), g(y/a))].

and coincide with those introduced by Feigenbaum [13, 14] and Kuznetsov [15]. respec-
tively. The essential eigenvalues whose moduli exceed one and which are not connected
with infinitesimal variable changes are v, =00=4.669201...for M and v, =
a=—-2.5029..., v, =2 for M. The corresponding eigenfunctions are h,(x), see Ref. [14],
and

$i(x, ¥) = (x = y) + o(x. y)and ¢x(x. y) = (x* — y?) + o(x. y7), (6)

see Refs [8, 15, 12].
The operator F,, giving the evolution of the system over 27 iterations of the initial map.
may be written as a linear approximation near the fixed point G, as

Folo..oxigp, .. > {. . vi,pD, ...}, (7)
where
vl j) = g(x (i, j)) + A6 h(x(i. j)) (8)
+Ca" [@i(x (. ), x(i = 1, D) + @i(x(i, ), x(G+ 1, 7))
+ @i(x(d, ), 2 j = D)+ ¢i(x (@, f), x(iy f + 1))
+ C2%[alx (0, ), x(0 = 1, ) + do(x (@, ), x(i + 1, /)
+ oa(x(i, )y xGs j = DY + @a(x (G, ), x(@ ] + D))

The perturbation with eigenvalue v, is controlled by the A parameter in the initial map,
A being proportional to A — A,. The perturbations with eigenvalues v; and v, correspond to
the inclusion of two types of coupling, which have different properties with respect to the
RG transformation. The first of them is called inertial coupling and the second —dissipative
coupling or diffusion. They are characterized by the parameters C, and C,. depending on
the initial coupling function ¢(x, y).

It follows from equation (8) that the regimes with similar spatio-temporal dynamics exist
in the points of the parameter space (A, C,. C,) and (A/8, C,/a, C,/2). The dynamical
variable scale decreases by ¢ and the temporal scale increases by two in the second point.
We call it the lattice scaling.

What is the situation when the number of interacting neighbours increases? All the
essential neighbours may be distributed over some number N of equivalence classes in
respect of the symmetry group transtormation of the lattice with fixed cell (i, j). Two
parameters, for inertial and dissipative coupling, must be given for each equivalence class.
So, the total number of essential parameters is 2N + 1. The rescaling of parameters is
accompanied now by changing all inertial coupling constants by a, dissipative coupling
constants by two and difference A —A. by 6. This is true for any lattice configuration
(rectangular, triangular, hexagonal).
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COMPUTER SIMULATION AND LATTICE SCALING

Let us consider now, what conclusions may be drawn concerning the behaviour of
two-dimensional lattices near the onset of chaos. The following methodology is used: at the
beginning, one must choose the models suitable for computer investigation. Then, some
initial results of numerical simulation must be obtained. It gives the prelimmary rough
understanding of the pattern dynamics in different regions of the parameter space. Such
studies were performed by Kapral [3], Oppo and Kapral [7] and Kaneko [10, 11] for
different coupling functions. Taking into account the above formulated scaling property, we
state the possibility of realizing the whole hierarchy of similar dynamical states with greater
temporal scales near the critical point of zero coupling. Thus, a fine structure of the
parameter space in the vicinity of this point is revealed. Further, this hierarchy of states
may be reproduced by special computer calculations. One may check the similarity of
corresponding regimes using spatial diagrams, spectra and Lyapunov exponents.

We shall consider only the square lattices with nearest-neighbour coupling and use the
logistic map f(x) =1 — Ax* as an individual cell. It is known as the simplest representative
of Feigenbaum’s universality class. Taking into account the form of the eigenfunctions (6),
one concludes that in the linearly coupled lattice [3, 7]

Xl ) = fOe (6 DY + /M), (0 + L) + x,(0 - 1. j) +
+x,(t j+ 1)+ x,00 ) = 1) = 4x,0. Pl 9

both types of coupling are present, with the inertial one dominating. On the contrary, the
quadratic coupling [9-11]

Xty J) = fOx00, ) + (e/)[fe (0 + 1, D)) + flx, (0 — 1, ) +
+f()(,,(l.. ] + 1)) + f(x,,(i, f - 1)) - 4f(xn(i’ ]))]7 (10)

is purely dissipative.

It is easy to se¢ that the coupling in equation (10) i1s produced by averaging over
neighbours, therefore its action tends to equalize their instantaneous states. It provides the
ground for the term ‘“dissipative coupling’. On the other hand, equation (9) maintains the
memory of the previous states when the state passes near the origin (in the order o« x). It
justifies the term ‘inertial coupling’.

Using a combination of the coupling terms from equations (9) and (10), one can obtain
the lattice with arbitrary ‘composition’ of coupling. So, the system with three parameters

Xopalis j) = fOG D) + (el + 1, j) + 5,60 — 1, j) + x,(i, j + 1)
+x,(i, = 1) — 4x,(i, ] + (Dl + 1)) + flx, (i = 1, ) +
+f(xn(i1 ] + 1)) + f(xn(ia ] o 1)) o 4f(xn(ia f))]a (11)

may be considered as a universal model. This is the simplest representative of the
universality class connected with the RG fixed point G; (for the case of square
nearest-neighbour coupled lattices). Tt contains the full variety of phenomena intrinsic to
this universality class in the arbitrary smail vicinity of the critical point {A=24., &, =0
£, = 0}.

It may be shown (see Appendix) that the parameters of inertial and dissipative coupling
of equations (7) and (8) are connected with £, £, by the relations

Cl = &, Cz = & — 0.08851. (12)

J
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We begin with the case of purely dissipative coupling [see equation (10)] using the
boundary conditions of periodicity

x(i + M, j)=x(i, j), x(i, j+ M)=x(,j). (13)

Having taken the random initial conditions with uniform distribution on (0, 1) one finds the
following basic phenomena classified by Kaneko [10, 11].

For small coupling (£ =0.1) and A near the critical value, a frozen random pattern phase
is observed. The domain structure is formed here; each domain is a set of adjacent cells
oscillating in phase. The temporal dynamics inside the domains depends on their configura-
tions and sizes and may become chaotic for supercritical A. By increasing A, the pattern
selection phase arises leading to the formation of islands of checkerboard patterns
demarcated by chaotic strings of complex, sinuous form. The temporal chaos is dumped in
checkerboard pattern regions while the strings demonstrate slow random walks (Brownian
motion of chaotic strings). The closed strings may collapse and die. After some long period
of time all strings die if the lattice has an even size M. The further increase of 4 provides
the phase of defect turbulence, when the closed strings can not only die but also appear. At
last, for larger A, the fully developed turbulence arises when no long-living structures are
present.

For larger coupling (¢=0.2) the same Kaneko phases are observed but the phase of
pattern selection is characterized by the appearence of 2 X 1-type structures (with in-phase
oscillation of two neighbour cells) rather than checkerboard patterns. For £ = 0.4 the phase
of frozen patterns does not take place: the temporal evolution is accompanied by the
gradual squeezing and disappearance of the initially existing domains. The final state is
spatially uniform in the subcritical range of 4 and turbulent without long-living structures n
the supercritical one.

According to the lattice scaling, all the named phenomena may be reproduced by
increasing the temporal scale by 2% if we reduce the A— A, value by 5%, the coupling
parameter &€ by 2% and the random initial condition amplitude by a*. We call the number
K the scaling level.

Let us consider the examples of similar Kaneko phases for different scaling levels. At the
level K = 0 we take A = 1.54, a random initial condition amplitude of 0.4 and two values of
coupling parameter ¢ = 0.1 and ¢ = 0.3. For the following levels the rescaling is performed

by the above rules.
Figures 1 and 2 show the snapshot patterns for the lattice of size 32 X 32. On lattice

points (7, j), squares with lengths proportional to a*x(i, j) are depicted for the scaling level
K. In Fig. 1 one can see the phases of Brownian motion of chaotic strings and in Fig. 2 the
phases of fully developed turbulence. The visual consideration of the pictures supports the
similarity of the spatio-temporal dynamics. For a more convincing verification we must
calculate quantitative characteristics of the dynamics.

In Table 1 we present the values of maximal Lyapunov exponent L just for the cases
shown in Fig. 2. Under transition from one scaling level to another, the values of L must
be proportional to 2~% because the characteristic temporal scale increases as 2%. From the
table one can see that the L-2¥ values coincide within the accuracy of the data. So, the
scaling really takes place.

Figure 3 shows the spatial spectra for the same regimes but in the lattice 64 X 64. After a
sufficiently large number of initial iterations to exclude transients, the averaging over
several decades of temporal steps was performed for spatial Fourier amplitude squares of
x(i, j). The scaling property appears as a reproduction of the spectra shapes for different
K levels, with a constant shift along the vertical axis in the semilog plot.

The case of linear coupling between the lattice cells was studied by Kapral [3] and Oppo
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Fig. 1. Phase of chaotic string Brownian motion in the lattice with dissipative coupling (10} at three levels of

lattice scaling K. The lattice size is 32 x 32 with periodic boundary conditions. The values x(i, j) are coded by

squares of size = akx(i, j): (a) K =0, A=1.54, £ = 0.1, the random initial condition amplitude Axpy = 0.4, the

iteration number # =400, (b) K =1, A=1.430892, £¢=0.05, Ax,q =0.16, n =800, (c) K =2, A=1.407524,
£=0.025, Axqq =0.064, n = 1600.

and Kapral [7]. One of the equations considered was just equation (9) within the trivial
variable change. It was found that the phenomenon of forming checkerboard patterns is
very typical. Such patterns may already arise in some parameter regions for subcritical A.
Depending on initial conditions, the domains of checkerboard patterns are formed being
demarcated by string defects. The quasiperiodic temporal dynamics may be observed on
the checkerboard pattern background with following transition to chaos under increasing A.
Also the cases of linear coupling with larger numbers of neighbours were considered. It
was found that other structures begin to play the dominating role rather than the
checkerboard ones. For example, the parallel strips with the wavelength of two dominate in
the nine-neighbour lattice and those with the wavelength of four in the thirteen-neighbour
one.

As we have already noticed, the linear coupling is a combination of inertial and
dissipative types, and the first one dominates. Under multiple RG transformations the
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Fig. 2. Developed turbulence phase in the lattice with dissipative coupling (10} at three levels of lattice scaling.

The coupling parameter values {a) €= 0.3, (b} £¢=10.15,
are the same as in Fig. 1.

C) ¢ = 0.075. Other parameters and visualization rules

Table 1. The maximal Lyapunov exponent L for states of the model (11) similar in the sense of the lattice scaling.
The type of couplmg pure dissipative {upper block}, pure inertial (middle block}, composite (lower block). The

lattice size is 32 % 32 with pertodic boundary conditions and random initial conditions with amplitude Ax 4

K A &1 5] Axmd L L2K

0 1.5400600 g 0.3 0.4 0.144 x 0.008 0.144 + 0.008
1 1.430892 0 0.15 0.16 0.071 = 0.004 0.142 £ 0.008
2 1.407524 0 0.075 0.064 0.035 = 0.002 0.140 £ 0.008
0 1.540000 0.1 0.0088 0.4 0.403 + 0.008 0.403 + 0.008
1 1.430892 —(.03995 —0.00352 0.16 0.206 + 0.004 0.411 + 0.008
2 1.407524 0.01596 0.00140 0.064 0.102 + 0.002 0.409 £ 0.008
0 1.540000 0.36 0.3 0.4 0.118 + 0.008 0.118 £ 0.008
1 1.430892 —0.14383 0.12150 0.16 0.061 = 0.004 0.122 + 0.008
2 1.407524 0.05747 0.07214 0.064 0.030 £ 0.002 0.121 = 0.008
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Fig. 3. Spatial spectra for three turbulent states similar in the sense of the lattice scaling: logarithm of temporally
averaged Fourier amplitude squares versus the wave vector components kg, k,. The lattice size is 64 x 64, the
other data are as in Fig. 2.

inertial coupling contribution increases quicker than the dissipative one because |v| > |v,
see equation (8). So the scaling intrinsic to inertial coupling will be observed in any
asymptotically small vicinity of the critical point {A= 4., £ =0}. This conclusion agrees
with the self-similarity of the stability regions found by Kapral [3] for spatially uniform
states with different temporal periods. This structure is reproduced under a scale change by
0 and a along the coordinate axes 4 and &, respectively.

Our formulation of scaling properties is somewhat more substantial. It relates not only to
infinitesimal perturbations of uniform states but also to arising spatial structures with finite
amplitudes. Furthermore, we conclude that the linear coupling is not the best example to
demonstrate the scaling property. Choosing the proper relation between the coupling
parameters in equation (11)., namely £, = €, & = 0.088¢ [see (12)], we obtain the lattice
with pure inertial coupling:

(s J) = fCi D) + (/{0 + 1, + x,(0 = 1, ) + x,(6, j + 1)
+a,(i, j — 1) — 4x,(0. )] + 0.088[f(x,(i + 1, j)) + flx, i — L. D) +
+ (i, + D) + fleG. ] = 1) — 4f(x, (@ )}

Figures 4 and 5 show the snapshot patterns of this lattice 32 X 32 with periodic boundary
conditions and random initial conditions. The rules of rescaling for parameters and initial
conditions are the same as in the previous case except for the coupling parameter. Now we
take £ — ¢/a®, where K is the scaling level. Figure 4 shows the checkerboard patterns
arising in the subcritical region. They are demarcated by the strings, which are almost
motionless here. Figure 5 presents the phases of developed turbulence. Visual comparison
of the pictures in Figs 4 and 5 supports the expected scaling because the same character of
patterns is observed at different levels. For quantitative verification, the maximal Lyapunov
exponent and spatial spectra were calculated for the regimes corresponding to Fig. 5. The
Lyapunov exponents are presented in Table 1. One can see again the coincidence of L-2¥

5
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Fig. 4. Checkerboard domains demarcated by string type defects in the lattice, size 32 % 32 with pure inertial

= (.088¢] at three levels of the lattice scaling K. The values x{/, j) are coded by

j)—=01]; (a) K=0. A=1.05, £y = 0.4, the random initial condition amplitude

1.325948, ¢ = 0.15981, Ax,,q = 0.16, n = 128. (c) K = 2.

A= 1.385048, & = —0.06385, Ax g = 0.064, n = 256.

values for different levels K. The spatial spectra (calculated for the lattice 64 x 64) also

satisfy the scaling property (see Fig. 6).

In conclusion of this section we demonstrate the scaling property for the case of arbitrary
composite coupling. To find the renormalization rule for the coupling constants &,. &, we
calculate the inertial and dissipative coupling parameters C,, C, from equation (12). Then
they are rescaled as C, — C,/a”*, C,— C,/2*, and the new g, &, are defined from the

inverse of equation (12):

&£ — El/aK, £y — 82/2K + O.OSSSI(I/GK - 1/2K)

We choose the particular set of parameters A=1.54, & =0.36, & =0.3 and a random
initial condition amplitude of 0.4 at zero level. For the levels K =0, 1. 2, the snapshot
patterns are shown in Fig. 7 using the above stated rules of visualization, the spatial spectra
are compared in the semilog plot of Fig. 8 The Lyapunov exponents L and L-2* values
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Fig. 5. Snapshot diagrams showing developed turbulence in the lattice, size 32 x 32 with pure inertial coupling for

three levels of the lattice scaling K. The values x{i. j) are coded by squares of size = [aXx(i, j) + 1]: (a}) K =0,

i=1.54, £, = 0.1, the random initial condition amplitude Ax g = 0.4, the iteration number n =64, (b) K =1,

A= 1430892, &; = —0.039953, Axpg=0.16, n =128, (¢) K =2, A=1.407524, £ =0.015963, Axpy=0.064,
n =256,

are presented in the last block of the Table 1. So we see that the lattice scaling property is
satisfactorily fulfilled in all considered cases.

RENORMALIZATION GROUP, UNIVERSALITY AND SCALING IN THE CONTINUOUS LIMIT

Let us turn now to the situation when the dynamics of CML may be considered in the
continuous limit, i.e. one can use continuous spatial variables &, n instead of discrete
indices {, j. It restricts the approach to CML with dominating diffusive coupling but leads
to more far-reaching conclusions about spatio-temporal dynamics near the onset of chaos.
For this case we develop the revised version of RG including rescaling of spatial
coordinates.

We begin with the consideration of the dissipatively coupled map lattice [see equation
(10)] at the Feigenbaum critical point A = A. and we suppose the coupling parameter £ to
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Fig. 6. Spatial spectra for threc turbulent states similar in the sense of the lattice scaling: logarithm of temporally
averaged Fourier amplitude squares versus the wave vector components kg, k. The lattice size is 64 x 64, the
other data are as in Fig. 5.

be small. Then, let us perform the RG procedure from the previous section many times. At
cach new step we deal with the states concentrated in a narrower interval of the dynamical
variable (u o« 1/a*) while the effective coupling parameter increases as £-2%. For suffi-
ciently large K the linear approximation (8) fails. However, it is quite reasonable to
suppose that in the situation of extremely strong influence of dissipative coupling patterns
would only arise where there is a very small difference between the neighbour cells.
Returning to the description of the situation by the initial dynamical equation, we can
define continuous spatial variables & = 2i/ Ve, n= 2j/\/? and change the difference
term to Laplacian;

3? N Ch
38 3y’
Now, rescaling the coupling parameter by two is equivalent to rescaling the spatial
variables by \/E So we can redefine the RG transformation. Now the fixed point operator
will correspond to a distributed coupled map mediua with diffusion rather than to an
uncoupled map lattice.

Let us consider this development of the approach in detail. Denoting the initial evolution
operator by Gy[x] we use this operator twice and make scale change Sx(&, n) = au(fg‘\/z,
7V/2). Then the new operator G,[x] = §G,G,8![x] is obtained for evolution over two
temporal steps. By repeating this procedure many times, we come to the recurrent operator
equation

Xoni(E M = fx, (8 ) + ( )f(xn(;:, ). (14)

Gilx] = gGKGKg_l[x]a (15)

where G, is the renormalized evolution operator for 2% temporal steps.
We believe that the following statements are valid.

1. Let the initial operator G, be the evolution operator obtained in the continuous limit
for a spatially extended lattice constructed by period doubling cells with dissipative



292 S. P. KuznETsov

‘o aan. . W

....’ﬂ\:..;.

"'*EE
:;::'.'=':: i‘-" o
(b)

--.;::;ii;:-:'.-ﬁ?::mf: IR

éa::;::-#::::ﬁ _

s D ST

o h

(c)

Fig. 7. Snapshot diagrams illustrating the lattice scaling for three levels K in the lattice, size 32 x 32 with

composnte coupling [equation (11)]. The values x(i. j) are coded by squares of size = [a®x(i, j} + 0.4]): {a) K =0,

r=1.34, £, =0.36, £, = 0.3, the random initial condition amphtude Ax g = 0.4, the iteration number n = 224,

(b) K=1. iA=1.430892, tl -0.14383, £ =0.12150, Axpa=0.16, n= 448, (c) K=2, A=1407524,
= 0.05747, &> = 0.07214, Ax g = 0.064, n = 892.

coupling. Then, for the critical value of the cell control parameter, the sequence of
operators generated by equation (15) converges to the regular limit G. This operator is the
fixed point of the RG equation

Glx] = §GGS[x] (16)

2. The operator G is universal, i.e. it is the same for a wide class of the systems with
dissipative coupling between the spatial elements. The only difference may be in character-
istic scales for x and &, n.

The equations (15) and (16) have the form supposed earlier by Kuznetsov and Pikovsky
[5] for one-dimensional systems, but here all the operators act in the space of two
argument functions.

We notice that the considered model (10) admits factorization in the form

Xpeiis ) = Lf(x,). (17)
It isn’t an accidental circumstance. It may be shown that the possibility of such
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Fig. 8. Spatial spectra for three turbulent states similar in the sense of the lattice scaling: logarithm of temporally
averaged Fourier amplitude squares versus the wave vector components k¢, ky. The lattice size is 64 x 64, the
other data are as in Fig. 7.

representation is a sufficient condition for the system to belong to the universality class
associated with the fixed point G. Notice that the map f must exhibit the Feigenbaum
period doublings, and the linear operator L. must satisfy the following requirements:

1. Translation invariance: the operator may be represented in general as Lx(&,
n = [|CE . n)x(E=E. n—n)dgdny.

2. Normalization: J/C(&, nd&dn = 1.

3. Locality: the integral A* = (1/4)[[(&> + #*)C(E, n)d&dy is finite. The value A defines
the characteristic spatial scale for the operator L —diffusion length per temporal step.

4. Local isotropy of the spectrum and dissipativity: the spectrum L(k, ¢g)=
e kETian [ ekitian = 1 — A2 + g7y + o(k?, ¢?) and | L(k, q)| <1 for all k. g #0.

We don’t give here the mathematically rigorous proof for the formulated statements, but
we shall demonstrate the convincing results of its numerical verification. The following
procedure is performed for several values of K. We take the CML (10) containing M
cells with periodic boundary conditions. Here M, = 26 is an arbitrary chosen integer and
My is the integer nearest to 25 M. Then, we take the ensemble of probe functions U,
|U| = 1. These functions may be given as the linear combination of standing waves with
random amplitudes and phases

U(i. j) = D, Ap cos 2aip/My + ¢;) cos Qmjg/My + ¢,).

Then, we give the initial condition x(i, j) = U(i, j):a~* and iterate the equation (10) by
2% times. We show the end states in Fig. 9 (a) and (b) for two representatives of the
ensemble {U} using the normalization X = i/My, Y = j/My, Z = xa*. These are just the
plots of the functions G«[U] vs the spatial variables. One can see an excellent convergence
of supposed data for K =3, 4, 5. It was also valid for larger K with increasing accuracy,
but addition of the data would make the picture illegible. The limit for K — = corresponds
to the result of action of the fixed point operator G on the probe function .
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(c) (d)

Fig. 9. Numerical verification of the existence and universality of the fixed point operator G responsible for

continuous scaling in the dissipatively coupled lattices. The control parameter value is the limit point of period

doublings of a local map A.: (a, b)—results of 8, 16 and 32 iterations of equation (10) with & = 0.4, the lattice sizes

are 26 x 26, 37 x 37 and 52 x 52, respectively, for two probe functions, with the use of renormalization rules

formulated in the text; (¢, d)—results of 16 iterations for two probe initial functions and three different lattice

models, where the averaging operator over 5, 9 and 13 neighbours was taken as operator F in equation (17). The
lattice sizes are 27 X 27, 35 x 35 and 44 x 44, respectively.

In the same manner one can verify the universality. The above scheme of calculations is
reproduced for several different systems (17). For example, we consider the different forms
of operator L averaging the states over five, nine and thirteen neighbour cells. The values
of diffusive lengths A are 1/V/5, 1/\/3, V/7/13, and we choose the lattice size to make
the M/A value approximately equal for all the cases: M =27, 35 and 44, respectively. The
results of calculations for sufficiently large K =4 are presented in Fig. 9 (c) and (d) for
three systems. One can see that the superposed configurations coincide very well in
accordance with our hypothesis of the universality.

Following the logic of the RG approach, we must turn now to the analysis of solutions
for RG equation (15) near the fixed point G. Substituting G,[x] = G[x] + £A,[x] into (15)
and supposing £ << 1, we obtain the operator equation

hoo[x] = $G(GS [xDh, 8 [x] + $h,GS ! [x), (18)
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where G'(GS~![x]) is the Frechet derivative of the operator G. The last equation has a
structure h, [x] = Mhn,[x], where M is the linear operator. One may expect that the
asymptote of the solution k, will be defined by the superposition of the operator M
eigenvectors with the largest magnitudes of eigenvalues. Fortunately, these eigenvalues as
well as the necessary information about the structure of the eigenvectors may be found
without formal solution of the operator eigenproblem.

Let us return to the universal representation of the evolution operator near the lattice
fixed point given by equation (7) and assume that the dissipative coupling dominates:

(K1 (19)
Now we can choose one of two ways.

1. To replace differences by spatial derivatives in equation (7} immediately and then to
perform the RG transformation (15) n and n + 1 times. Due to the inequality (19} it is
possible to choose 7 to provide the operators G, = G + Ah, and G, = G + Ah,, close
to the fixed point G.

2. Preliminary to perform the lattice RG transformation (2), then introduce the
continuous spatial variables and rescale them by V2. The dissipative-type term isn’t
changed after this procedure, while the inertial-type term accepts the factor /2. Then we
perform the RG transformation (15) n times and obtain the operator G,=G+ Ah,a/2,
which must coincide with the above operator G, . So, we have h,., = h,,a/\/é. Thus, the
operator that arises from the considered initial perturbation is just the eigenvector of
equation (26) with the eigenvalue v; = a/2 = —1.2512... We denote this eigenvector by
H,. Of course, the eigenvector H, must be added corresponding to perturbation of the
local map parameter, with eigenvalue v, = 6 = 4.6692. . ..

Now we give the formulation of the continuous scaling. :

In the continuous limit the spatially distributed system with dominating diffusion is
characterized by two essential parameters A and a,—the factors at the eigenvectors H, and
H . The parameter space {A, a} has the property of the scale invariance under parameters
change A — A/, a— a/v,. This change is accompanied by doubling the temporal scale of
similar states, increasing the spatial scale by V2 and rescaling the dynamical variable x by
1/a.

This formulation relates to the infinite size system. One may also find the similar states
in the case of a system of finite size, but an additional parameter, the spatial size M, must
be taken into account with the renormalization rule M - M \/5

It is easy to write the continuous limit form of the universal model by adding the inertial
coupling term in equation (14). Supposing the form f(x) =1 - Ax? for the local map and
taking the proper ratio of linear and quadratic couplings in the added term [see equation
(12)], we have

2

Xaa1(§ M) = f(xa(E, ) + (% *
s

aZ
S )f (x.(§, ) (20)

a2 3’
+ a(afg? o Jonuz. b + 0.08875, 5, ).

However, the lattice model of equation (11) remains more suitable for computer
experiments to demonstrate and verify the continuous scaling properties. We must only
formulate the rules of renormalization in terms of parameters presented in this equation.
We find the inertial and dissipative coefficients from equation (12), renormalize them by
C,— C(a/2)y"*, C;— C, and return to the & parameters using the inverse of equation
(12):
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g, — £(a2) %, e, > &, — 0.088¢, + 0.088¢,(af2) X,

The unique relevant parameter A remains in the case of pure dissipative coupling.
Transition to the Kth scaling level is provided by rescaling of this parameter without
change of coupling. Notice that the sustained dynamics of an asymptotically large system in
the continuous limit seems to be independent of the size parameter M and of the random
initial condition amplitude (except that too large amplitudes lead to divergence). The
dynamics in the subcritical region consists of the squeezing and disappearance of the
domains that existed due to initial conditions and leads to uninteresting uniform states.
Thus, our computer examples will relate to supercritical A.

Let us explain briefly how the suitable lattice size M must be chosen. We emphasize that
the required M value increases when we come toward the critical point 4. Really, A — /4,
behaves as & X and M as 252 with dependence on the scaling level K. So,
M x (A—A)7", where v=(1/2)logs 2 =0.2249 .. .. Hence, we may write the evaluation
for the ‘coherence length’ of the threshold size, when the system begins demonstrate the
dynamics intrinsic to the infinite one:

Len = CVe(A—2)7",

The factor C may be evaluated from the data found by Bohr and Christensen [9]; in our
normalization C =7. We fix the system size sufficiently large to satisfy the condition
M > L, for all considering scaling levels K < K ,«.

Figure 10 shows the snapshot diagrams for similar (in the continuous scaling sense)
turbulent states of the lattice model (10) with £ = 0.4. The periodic boundary conditions
were used for the lattice 60 x 60. The initial conditions were given by the random numbers
of small amplitude. The pictures were observed at each 16th temporal step up to the
appearance of the visually unchanging character of turbulent patterns. At the scaling level
K =0 we take A=1.54, which is rescaled for K =1, 2, 3 according to the rule
A— A+ (A~ A.)/8%. The values of x(i, j) are coded by squares of size proportional to
[a*x(i, j} + 0.4].

Comparing Figs 10 (a—d), one can see that they look like subsequently magnified

Fig. 10(a) and (b). Caption on p. 297.
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Fig. 10. Snapshot diagrams illustrating the continuous scaling for four levels K in the dissipatively coupled lattice,

size 60 X 60, [equation {10)] with periodic boundary conditions, £ = 0.4. The values x(i, j) are coded by squares of

size = [aRx(i. Y +04]; (a) K=0, A=154, (b) K=1. A=1.430892, (c) K =2, A=1.407524, (d) K =3,
A= 1402519,

pictures of the same turbulent structure. This observation qualitatively supports the
expected scaling property.

The spatial spectra were calculated for the lattice 64 X 64 by the same algorithm as in
previous section, but without change of coupling for different K. The lattice is isotropic in
the continuous limit, so the spectra at high scaling levels must depend only on the modulus
of the wave vector «. They are depicted in Fig. 11 using the log—log plot. One can see the
reproduction of the spectra shapes from one level to another with constant vertical and
horizontal shifts reflecting the scale renormalization for dynamical variable and spatial
coordinates. At last, the Lyapunov exponents L are presented in Table 2 for the same
regimes. L-2% value independence of the scaling level K (within the accuracy of
calculations) shows that the scaling property really works.

Figures 12 and 13 show the snapshot diagrams and spatial spectra obtained for the lattice
(11). At the level K =0 we take A= 1.54, £, =0.36, &, =0.3. The other conditions and

S, dB

S“N\

=70

®
-

4 15 32

Fig. I1. Spatial spectra for three turbulent states similar in the sense of the continuous scaling: logarithm of
temporally averaged Fourier amplitude squares versus logarithm of the wave vector modulus. The lattice size is
64 x 64, the other data are as in Fig. 10.
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Table 2. The maximal Lyapunov exponent L for states of the model (11) similar in the sense
of the continuous scaling. The type of coupling: pure dissipative (upper block), composite

(lower block). The lattice size is 32 X 32, periodic boundary conditions

K A £1 £2 L L-2K

0 1.540000 0 0.4 0.144 = 0.008 0.144 = 0.008
1 1.430892 0 0.4 0.074 + 0.004 0.147 + 0.008
2 1.407524 0 0.4 0.036 £ 0.002 0.146 = 0.008
0 1.540000 0.36 0.3 0.096 + 0.008 0.096 # 0.008
1 1.430892 —0.28767 0.24301 0.060 + 0.004 0.119 * 0.008
2 1.407524 (1.22987 0.28855 0.030 + 0.002 0.122 £ 0.008

Fig. 12. Snapshot diagrams illustrating the continuous scaling for four levels K in the lattice, size 60 x 60, with

composite coupling {equation (11)]. The values x(i, j) are coded by squares of size = [a¥x(i, ) +0.4]: (a) K =0,

A=1.54, £,=0.36. =03, (b) K=1, i=1.430892, ¢ = —-0.28767, £, =024301, (c) K =2. A=1.407524,
£, = 0.22987, £, = 0.28855, (d) K =3, A = 1.402519, £y = —0.17368, £, = 0.25216.
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Fig. 13. Spatial spectra for three turbulent states similar in the sense of the continuous scaling: logarithm of
temporally averaged Fourier amplitude squares versus togarithm of the wave vector modulus. The lattice size is
64 % 64, the other data are as in Fig. 2. At the last scaling level K =4, A = 1.401447, £; = 0.14677, ¢, = 0.28124.

methods of representation remain the same as for Figs 10 and 11 discussed above. Also the
Lyapunov exponents L and L-2% values are presented in Table 2 for scaling levels K =0,
1, 2. Again we see the manifestation of scaling with very high accuracy (except at the
lowest level).

CONCLUSIONS

The presented RG approach plays a similar role to the wo-dimensional CML as the
Feigenbaum theory for the ordinary period-doubling systems. Notice that it leads to the
important idea of scaling properties for spatial patterns.

Two proposed versions of RG analysis, lattice and continuous, give us an example of the
coexistence of two critical situations with different codimensions in the CML parameter
space. Figure 14 explains a relation between the lattice and continuous scaling for the
simplest case of the system with pure diffusion. The critical point L associated with the
fixed point of the lattice RG transformation exists in the plane of the control parameter vs
the coupling constant. Also the critical line C exists, where the long time evolution

A B C
‘
Continual
critical
d Line

' c Lattice
critical

I] point

Contrcl parameter ——

Fig. 14. Explanation of the relation between the lattice and continuous scaling for the CML with pure diffusion.
The sequences of the regions are shown similar in a sense of the first (a, b, ¢, ...) and the second (A4, B, C, .. 2
type of scaling.
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operators converge to the universal operator G. Two sets of regions are shown which are
similar in the sense oi the lattice scaling (a, b, ¢) and in the sense of the continuous one
(A, B.C).

In general, the search for. and classification of various critical behaviour types according
to their codimensions seems to be a promising direction in nonlinear dynamics.

We emphasize the principal importance of two coupling types, inertial and dissipative,
for understanding CML dynamics near the onset of chaos. In spite of familiar terminology,
their nature is significant because it arises from the structure of the RG, not from some
artificial construction. Due to universality of the coupling types, the lattice models were
defined with a few control parameters, giving the full variety of phenomena intrinsic to the
corresponding universality class. The construction of such models must be considered as a
separate important problem of the theory.

The RG analysis throws light on possible CML applications in order to describe real
systems. Now, the CMLs may be considered not only as qualitative illustrations of
turbulent behaviour, but also as legal representatives of their universality classes, suitable
for quantitative description of the phenomena near the onset of chaos.

We believe that our approach gives the adequate theoretical grounding to a number of
scaling properties observed earlier by Kapral, Oppo and Kapral and Bohr and Christensen
[3. 7. 9]. Being essentially different for linear and quadratic couplings, they are now treated
from a common point of view.

Notice, that increasing the characteristic spatial scale near the continuous scaling critical
situation has a straightforward analogy in phase transition theory: the correlation length
increasing near the critical temperature. In general, development of the RG approach
including the spatial variables promotes the convergence of concepts of the dynamical
system theory and the phase transition theory.

One may hope that results of this work would favour the statement of experimental
investigations guided by the concept of RG, universality and scaling.
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APPENDIX

We describe here the procedure allowing us to represent any weak coupling as a combination of the inertial and
dissipative types.

It would be sufficient to consider the particular class of solutions. Let us define two sublattices. the first as a set
of cells with the odd sum of indices i + j and the second as a set with the even sum. Then we assume that the
dynamical variable values coincide in all cells of each sublattice and are equal to u and v, respectively. Such
solutions may be described by a system of two coupled maps

it = flup) + eplup. v1), vipy = flog) + eplog. uy), (A1)

where @(u, v) is the coupling function vanishing for equal values of the arguments.

Let us consider long-period cycles of the map (A.1) in invariant subspace u = v at the critical point A= 4.
Using the n-fold renormalization and rewriting the evolution operator (7) for the considered class of solutions we
obtain

u — glu) + glcra@i{u, v} + 227 ¢a(u, v} (A.2)
v — g(v) + efciaPi(v, u)y + 22" ¢a(v, u)l.

where the proportionality of expansion factors to the coupling parameter £ is taken into account. Then the
rescaled element of the period-2" cycle is represented as the fixed point (u . u ), where u_ s the root of the
equation u = g(u). We ask now: how do the multipliers of the cycles u!!), u{?" depend on n? Calculating the
eigenvalues of the derivative matrix for the map (A.2) at the point (u, u ) gives

pl =gl ) pl) = g, + elei Dy + e2D27), (A.3)

where D; = }3¢i(t. ©)/3u]yp = . Multipliers u'!} and u{?’ concern symmetric and antisymmetric perturbations
of the fixed point. respectively. *

Thus, to analyze the "composition’ of coupling in a given system of coupled maps, it is necessary to find a
sequence of (unstable) period-27 cycles with « = ¢ at the point A=A, and to calculate the derivatives of their
multipliers k, = (-ap‘,,z’,"'ag)fzu. They must obey the relation k, = ¢ Da" + c2D;2" and this fact allows us to find
the coefficients of expansion.

Let us take. for example. the system with linear coupling

U1 = flug) + eley — up), vyer = flog) + ey — vy). (A.4)
Substituting f(u) =1 — Au’. A = i, = 1.401155 and performing the proposed calculations we present the results in
Fig. 15 using coordinates X = (a/2)". ¥ = x,27". According to the consideration given above. the points lie on
the straight line ¥ = ¢; DX + ¢y D> and from the plot we find ¢, D) = —1.821 and 2D, = —0.281. So. in this

case we have the combination of inertial and dissipative coupling.
For the system with quadratic coupling

wier = flu) + e(flog) — flu)), o = flog) + e(flu) — fle))), (A.3)

one finds ¢ D =0 and c;D, =3.202 (see Fig. 15). This coupling is fully dissipative. Evidently, the combination
of both coupling types in the proportion of 1:0.088 will give the pure inertial coupling.

N

%4 4
X

Fig. 15. Plot for calculation of the coupling composition in the map (A.l) with linear (+) and quadratic (x)
couphing.



