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Tricritical behaviour intrinsic to one-dimensional maps with a quartic extremum near the onset of chaos is found in the modi-
fied Hénon map and the Zaslavsky map. The tricriticality appears in two-dimensional maps only as a three-parameter phenome-
non while the one-dimensional maps may demonstrate the tricriticality also in the two-parameter case.

It is well known that a wide class of nonlinear sys-
tems demonstrate transition to chaos via a period
doubling cascade when a control parameter is
changed. Among them there are the one-dimensional
maps with a quadratic extremum and more compli-
cated nonlinear systems — the Hénon map, Lorenz
and Rossler models, the driven nonlinear oscillator
and so on. Near the onset of chaos they show the Fei-
genbaum quantitative universality [1,2].

One may expect that other, more complicated,
types of universal behaviour appear in nonlinear sys-
tems depending on more than one parameter. For
instance, let us consider the smooth one-dimen-
sional map having an extremum and depending on
three parameters. In the parameter space the line may
exist, where the second and the third derivatives at
the extremum point are equal to zero. If the period
doubling cascade occurs at this line, the law of its
convergence is specific for the map with a quartic,
rather than a quadratic, extremum. The convergence
rate is 7.2847 instead of the usual Feigenbaum con-
stant 4.6692 (see ref. [3]). The maps having more
than one extremum exhibit a similar situation even
in the two-parameter case. Really, the condition that
a quadratic extremum is mapped to another one is
given by one equation. It defines the line on the plane
of two parameters, where the twice iterated map
f(f(x)) has a quartic extremum. So, the period
doubling cascade (if it is observed at this line) con-
verges again with the rate intrinsic to the quartic map.

The limit point of the period doubling cascade
found under these additional conditions is called tri-
critical. This term was introduced by Chang, Wortis
and Wright [4] by analogy to phase transition the-
ory. These authors investigated the one-dimensional
two-parameter map

Xpp1=1—Ax; —Bx?} ()

and found that there are Feigenbaum critical lines
(locus of period doubling accumulations) and tri-
critical points being the ends of these lines. The to-
pography of the parameter plane near all the tricrit-
ical points 1s similar and obeys the two-parameter
scaling: the structure is reproduced under parameter
rescaling by 7.2847 and 2.8571 along suitable co-
ordinate axes. These results were explained using re-
normalization group (RG) analysis. It repeats 1he
Feigenbaum approach but deals with another fixed
point of the functional RG equation.

Having in mind an analogy with Feigenbaum’s
theory and the RG results, one could expect that the
tricritical behaviour is universal and widespread in
nonlinear systems exhibiting transitions to chaos. In
fact, the tricriticality was found in several one-
dimensional maps (quartic map, cubic map. circle
map [4-6], but I do not know of any works where
the tricriticality would appear in more complicated
systems with a multi-dimensional phase space, even
in two-dimensional maps. I think this 1s not acci-
dental because the question of the tricritical univer-
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sality is not trivial. It is shown in this Letter that the
tricriticality appears typically in two-dimensional
maps only as a three-parameter phenomenon in con-
trast to one-dimensiondal maps demonstrating also
the two-parameter tricriticality. Examples of two-di-
mensional maps with tricritical behaviour will be
considered. Such maps may appear as Poincaré re-
turn maps for nonlinear differential equation sys-
tems with a three-dimensional phase space. Hence,
the tricriticality can be realized in the three-param-
cter families of these systems too.

Let us recall briefly the RG analysis results for tri-
criticality. Following Feigenbaum, the RG transfor-
mation is defined for the one-dimensional map f:

R:flx)—af(f(x/a}) . (2)

Here a is a scaling factor which must be evaluated.
Besides the known fixed point found by Feigenbaum
(g(x)=1—1,5276x2+0.1048x%+ ..., a=
—2.5029...), the RG transformation R has the fixed
point
gr(x)=1-1.8341x*+0.0130x8+0.3119x"+...,
(3)
responsible for tricritical behaviour. The corre-
sponding scaling constant is gr= — 1.6903029714,
The RG operator R, linearized near this fixed
point, has three essential eigenvalues in i1ts spectrum
which are greater than unity in modulus and are not
connected with infinitesimal vanable changes:

oy, =7.284686217, b1.=a?, Jry=a’.

The corresponding eigenvectors are

A {x)=1-0.1592x*—-0.5405x%+...,

Ara{x)=1+5.7050x"—1.6908x*—0.0806x°
—0.5774x%+ ...,

bos () = 1+9.2816x+0.7026x*—0.1312x5+ .. .
(4)

The first and the second vectors are related to the
even subspace while the third one has an odd part

hra(X) —hrs(—=x)ocgr(x) /X2,

In accordance with the general RG method idea, the
number of essential eigenvalues gives us the codi-
mension of the critical situation. In other words, this
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is the number of parameters which the family of sys-
tems must have to demonstrate typically this situa-
tion. However, we explained at the beginning of the
Letter that the tricriticality may have a codimension
of either three (a quartic extremum in the initial
map) or two (the situation of mapping one extre-
mum to another). It can be found in the last case
that some sort of hidden symmetry exists. So, per-
turbations of the RG fixed point, which appear when
we change the map parameters, do not contain the
third eigenvector.

The simplest model map demonstrating the co-
dimension-three tricriticality is constructed by add-
ing an odd term to the map (1):

Xpo1=1=Ax2 —Bx*—Cx,. (5)

The tricritical point is obtained as the limit of a pe-
riod doubling cascade at a line A=0, C=0, where
the map has a quartic extremum:

A=0, B=1.5949013562288, C=0. (6)

Also the codimension-two tricriticality may be found
in this map, but the simplest example of it 1s found
in the cubic map

Xpp1 =A—Bx,+Xx; . (7)

The tricritical point is just the limit point of the pe-
riod doubling cascade at the line 342=B(1—-2B/3)?
where the condition of extremum-to-extremum
mapping is valid. It is

A=-0.242698757265,
B=1.951385777782. (8)

The next example is the circle map. describing quasi-
periodicity, phase locking and chaotization. It has
the general form

xn+1=-xn+kf(xn)+r, (9)

where fis a function obeying f(x+2n)=/(x). The
most popular particular case is the sine-map

X411 =X, +r+ksinx, . (10)

Inside the Arnold tongues in the k, r plane, where the
phase locking takes place, the transition to chaos via
period doubling bifurcations is observed typically
when k 1s increased. Also the codimension-two tri-
critical points exist being the ends of the Feigen-
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baum critical lines [6]. One of them is
r=0.428467608369, k=3.074701618846. (I11)

In more general circumstances, the nonlinear func-
tion f(x) may be controlled itself by some addi-
tional parameters. Taking it as a sum of two
harmonics

f(x)y=sinx,+bsin(2x,+p) , (12)
we obtain the map
Xpo1 =X, +r+k[sinx,+bsin(2x,+¢)], (13)

in which the codimension-three tricriticality may be
found. We select a special parameter relation for the
function f(x) to have quartic extrema and calculate
the limit of the period doubling cascade inside the
Arnold tongue. For a particular r, r=—-0.576, we
have

k=3.792812600, 5=0.238132526,
9=1.037954989 . (14)

We emphasize one important universal property of
the tricriticality. In the tricritical point the map has
all period-2" cycles, which are unstable and are char-
acterized (in the large » limit) by the same universal
multiplier y.= —2.05094049. In fact, the map giving
the evolution of the state over 2" temporal steps looks
like the universal function gy(x) for large n - it may
differ only in scale. So the mulitiplier of the period-
27 ¢ycle is a universal constant obtained as the de-
rivative of gr(x) at the fixed point:

He=87(X4), Xu=gr(x.).

Let us turn now to two-dimensional maps and select
the examples reducible to the above one-dimen-
sional maps in the strong dissipation limit. The pa-
rameter responsible for including the second dimen-
sion will be denoted by D always. The strong
dissipation limit corresponds to D=0,

The first two examples are the modified Hénon
maps

Xpp1=1 _Axi"Bx:_an_Dym Va41=Xy,
(15)

and

x,,+1=A—an+xf‘,—Dy,?, Ynv1=Xn . (16)
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PHYSICS LETTERS A

12 October 1992

The third example is the dissipative standard Zas-
lavsky map [7]

Xpor =X, Hv+uv[Y, +ef(x,)],
Yn+1=e_r[Yn+£f(xn)]v (17)

where v, i, €, and I" are parameters. We take the non-
linear function (12) and change the variables and
parameters as foliows,

y=e "x—puvY, k=euv,

r=v(l—e"), D=e~ ", (18)

to obtain the map

Xps1 =X, +r+k[sinx,+b0sin(2x,+¢)]
+D(Xy=Ya)s Pnr1=X,. (19)

We know that the maps (15), (16), and (19) have
tricritical points for D=0 when they are reduced to
(5), (7), and (13), respectively. If we take such a
tricritical point and make D=0, some perturbation
of the RG equation fixed point will appear. One can
analyze this perturbation and reveal the contribu-
tion of all essential eigenvectors (4). With this aim,
let us calculate the derivatives of the period-2" cycle
multipliers with respect to D at the tricritical point
for different ». If the ith eigenvector contributes to
the perturbation, the component, increasing as d7;,
will be present in the sequence du,/dD.

At first, let us consider the case when the codi-
mension-two tricriticality is realized in the strong
dissipation limit. In the first column of table 1 we
give the values of du, /90D calculated numerically for
the map (16). We expect that this sequence is de-
scribed by a relation

3
/D= Y Cio" (20)
i=1

Using the least-squares method, we have found
C,=0.296624, (C,=0.346874,
Cy=-0.270258 . (21)

Comparing both columns of table 1 one can see that
the coincidence is excellent.

So we find that including the second dimension
gives rise to the RG fixed point perturbation con-
taining ali three eigenvectors {(4). This means that
an attempt to find tricriticality in the two-dimen-
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Table 1

Derivatives of the period-2" cycle multipliers for the map (16)
at the tricritical point A=-0.242698757265, B=
1.951385777782, D=0.
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n du,/oD

direct calculation by egs. (20) and (21)

2 13.822108 13.901792
3 158.08801 157.86285
4 724.64118 724.74351
5 6899.6053 6899.0951

6 41195.446 41195.982

7 340319.34 340319.26

8 2274758.9 2274758.8

9 17528916. 17528916.

sional map near the considered point is condemned
to failure: it is impossible to compensate the third
eigenvector contribution by variation of other pa-
rameters. This is because the parameters present in
the one-dimensional map influence only coefficients
of the first and second eigenvectors due to the above-
mentioned hidden symmetry.

We conclude that the tricritical point existing for
D=0 has codimension three in the parameter space
of the two-dimensional map. The third eigendirec-
tion associated with the scaling constant J; is trans-
versal to the plane D=0. So the appearance of the
second dimension destroys the hidden symmetry. The
same situation is realized in any other Hénon-like
map if the extremum-to-extremum mapping takes
place in the strong dissipation limit. One more ex-
ample is given by the Zaslavsky map (17) with
f{xY=sinx, which is reduced to the one-dimen-
sional sine-map for D=e¢~ 7/ -0.

Let us turn now to the situation when the one-
dimensional map obtained in the strong dissipation
limit exhibits the codimension-three tricriticality. In
this case any perturbation of the RG fixed point may
be compensated by changing three parameters of the
one-dimensional map, because it allows one to con-
trol all three essential eigenvectors. So, if the param-
eter D is increased, the tricritical point will simply
move in the space of three other parameters.

We note, however, that the method of searching
for tricriticality at the lines where the quartic extre-
mum exists, cannot be generalized simply for the two-
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dimensional case. In fact, now it is difficult (if pos-
sible) to define a location and type of the point,
which could play the same role as the one-dimen-
sional map extremum. Hence, we use an alternative
approach. We search for a point in the three-dimen-
sional space, where the multipliers of three cycles with
long periods 27, 2"+ and 27*? are equal to 4. It gives
a good approximation for the tricritical point with
precision increasing rapidly with n.

For the modified Hénon map (15) we start from
the tricritical point (6). Increasing D we trace the
codimension-three tricritical line in the four-dimen-
sional parameter space (A4, B, C, D) by the above
explained technique. Some particular points are pre-
sented in table 2.

One can verify that all universal scaling properties
intrinsic to the tricriticality are valid for the two-di-
mensional map (135) at the points given in table 2.

Figure 1 shows views of attractor at the tricritical
point for D=0.3. Each succeeding picture gives a
magnified part of the previous one. From one pic-
ture to another the magnification is increased by fac-
tor ar. It can be seen that the Cantor-like structure
reproduces itself in smaller scales in accordance with
the expected tricritical scaling.

Due to dissipative nature of the map (15) with
D< 1, an approximate one-dimensional map may be
found to describe its dynamics. If we consider the
tricritical point, this map must have a quartic extre-
mum. Figure 2 shows the numerically found maps
for the model (15) with D=0.3. Random initial
conditions were taken, then a number of preliminary
iterations was done to fit to a central manifold, and,
at last, the points x,,» versus x, were plotted for
N=1, 2, 4. The shapes looking like quartic extrema
in fact can be seen in the pictures.

In fig. 3 the power spectra are compared for time
series generated by two- and one-dimensional maps
at their tricritical points. A remarkable coincidence
of the spectra supports the tricritical universality.
Note that the tricritical spectrum differs from the or-
dinary spectrum at the period doubling accumula-
tion point; the rate of the subharmonic amplitude
decreasing from one level to another is about 10 dB
rather than the convenient value of 13.4 dB.

Finally, one can verify the scaling properties of the
parameter space near the tricritical point. With this
aim let us calculate the derivatives of multipliers with,
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Modified Hénon map (16)

Modified Zaslavsky map (19}. R=—-0.576

A B C D k b @ D
0.00765746 2.10701337 0.03496330 0.1 4.04724523 0.23578705 0.99083357 0.1
0.01447916 2.76632514 0.06465294 0.2 4.31254195 0.23390781 0.95416022 0.2
0.02092622 3.60380862 0.08986689 0.3 458698778 0.23241654 0.92590326 0.3
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Fig. 1. Tricritical attractor for the modified Hénon map (16),
D=0.3, other parameters are given in table 2. The property of
selfsimilarity is demonstrated: each succeeding picture shows a
magnified part of the previous one.

respect to the parameters of the tricritical point for
the period 27, 27+!, 27*2 27+3 and find the matrices

Opnfd4  Ouy/dB  dp,/0D
Ons1/0A Opty /OB Optyy /0D (1)
aﬂn+2/aA a.un+2/aB a/un+2/al)

M, =

442
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Fig. 2. Plots of one-dimensional maps over one, two and four

iterations obtained numerically for the system {16) at the tricrit-
ical point for D=0.3.

and M, ,. If the perturbation vector r= (A4, AB,
AC) corresponds to an eigendirection in the param-

eter space with a scaling constant J1, we have,
evidently,

Mn+1r=5TJMnr-

Thus, the constants dr; will be obtained as the ei-
genvalues of the matrices M, 'M,, .., for sufficiently
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Fig. 3. Power spectra of time series generated by two- and one-dimensional maps at their tricritical points: {a) map (1), 4=0,
B=1.594901356; (b) map (16), D=0.3, other parameters are given in table 2.

large n. The calculated eigenvalues for the map (15)
are presented in table 3 for different #. One can see
that their values agree with Jy,; found from the RG
analysis.

Let us turn now to Zaslavsky map (19) and start
from the tricritical point (14), D=0. We fix one of
the parameters, r= —0.576, and increase D changing
the remaining parameters k, b, ¢ to keep the tricrit-
ical situation. As a result, we obtain a tricritical line
in (k, b, p, D)-space and the points presented in ta-
ble 2 for particular I’s. A verification of different
scaling properties supports the tricritical umversality
in this case t0o. For example, the eigenvalues of ma-
trices M 'M, , |, where

du./dk  dw,/db  du./de
Mn= a,un+1/ak 6#n+l/ab aﬂ'n+1/a¢
a/ln+2/3k a:un+2/ab a,u-n+2/a¢

Table 3

for the map (19), also converge to the universal
numbers o,

We conclude that in contrast to Feigenbaum uni-
versality which takes place in one-parameter fami-
lies of nonlinear dissipative systems of arbitrary di-
mension, the tricriticality appears in a different
manner in one- and multi-dimensional cases.

In one-dimensional maps there are two types of
tricriticality: (i) the codimension-three tricriticality
arising in unimodal maps, when an extremum be-
comes quartic, (ii) the codimension-two tricritical-
ity, when one quadratic extremum is mapped to an-
other. As we find, in two-dimensional Hénon-like
maps and, evidently, in other complicated systems
— maps or differential equations — three parameters
are needed to realise the tricriticality.

Eigenvalues of matrices M, 'M,, ., .. Modified Hénon map (16), 4=0.02092622, B=3.60380862, C=0.08986689, D=0.3. Modified
Zaslavsky map (19), R=—0.576, k=4.58698778, £6=0.23241654, ¢=0.92590326, D=0.3.

n Modified Hénon map (16) Modified Zaslavsky map (19)

(51 62 53 6[ é‘2 63
1 7.0690 3.2314 —4.4507 6.9182 3.3793 —5.0268
2 7.2001 2.9509 —4.8495 7.2863 2.8468 —4.8429
3 7.2841 2.8254 —-4.8251 7.2709 2.8712 —4.8298
4 7.2586 2.7992 —4.7938 7.2843 2.8092 —4.8260
5 7.2989 2.6028 —4.9069 7.2650 2.1720 —-4.8177
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