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New universality classes are discovered for critical phenomena which may be observed in nonlinear systems during a multipar-
ameter study of roads to chaos. A sketch of their classification is discussed.

1. Up to now several scenarios of transition to
chaos in dynamical systems observed under the
change of some contro! parameters have been re-
vealed and studied in detail [1]. In dissipative sys-
tems these are the Feigenbaum period doubling se-
quence [2], transitions via intermittence [3] and
via quasiperiodicity [4]. The renormalization group
(RG) analysis has been developed, showing that each
of these scenarios 1s connected with their respective
universality class [2,4,5]. All dynamical systems re-
lating to the same class possess the same set of crit-
ical indices featuring the behaviour in the critical sit-
uation (exactly at the border of chaos) and in its
vicinity. One-dimensional maps, the simplest sys-
tems demonstrating the above scenarios, are consid-
ered now as the canonical representatives of their
universality classes.

While studying the systems with a larger number
of dimensions and control parameters one may ex-
pect to meet some other types of critical behaviour.
Suppose, for example, that in the parameter space of
some multi-dimensional system there are period
doubling bifurcation surfaces accumulating to the
critical surface in accordance with the Feigenbaum
law. Moving along this surface (with codimension
one) one may come to the boundary - the critical
surface with codimension two (its appearance may
be caused by a new mode stability loss). In turn, it
may have, as a boundary, the critical surface with
codimension three and so on. Each type of critical
behaviour in this hierarchy must relate to its own

universality class. The problem arises, to develop RG
analysis covering these hypothetical types of critical
behaviour, to find their universal critical indices and
to classify the types of critical dynamics in increasing
codimension order in rough analogy to bifurcation
and catastrophe theory [6].

In this Letter we consider, from this point of view,
the critical phenomena occurring in two-dimen-
sional maps and take into consideration several new
universality classes which may be observed in non-
linear systems of diverse nature under the multi-par-
ametric study of transition to chaos.

2. We begin with a two-dimensional generalization
of the Feigenbaum RG procedure. Having the two-
dimensional map

GO: Xn-é—l:gO(Xnv Y,,),
Yn+l=jz)(Xn7 Yn)v (1)

we repeat it twice and then use the linear transfor-
mation of the dynamical variables S to make the new
map G,=S""'G,G,S presenting the two-time-step
evolution as similar to the initial one as possible. It
is convenient to choose the coordinate system in the
phase plane X, Y in such a way that the above linear
transformation would have the diagonal form,

S X»X/a, Y-Y/b.

The multiple repetition of this procedure leads to the
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recurrent RG equations: G, ,=5""'G.G,S or in ex-
plicit form:

8+ =agi(g(X/a, Y/b), fi(X/a, Y/b)),
Sisr =bll(g(X/a, Y/b), fi(X/a, Y/b)) . (2)

In accordance with the general RG analysis idea, each
saddle fixed point {or saddle cycle) of this func-
tional transformation is responsible for a definite type
of critical behaviour and universality class. To find
such a solution means at the same time to find the
scale factors @ and b.

The eigenvalue spectrum of the RG transforma-
tion (2) linearized near the fixed point (or ¢ycle) is
of particular importance. The number of eigenvalues
which are greater than unity in modulus and are not
connected with the infinitesimal dynamical variable
changes defines the codimension - the number of
parameters needed to meet this critical behaviour
typically. The eigenvalues themselves are the factors
of scaling along the appropriate directions in the pa-
rameter space.

To find the fixed points and cycles of the RG
transformation numerically one may approximate the
functions g and fthrough finite orthogonal polynom-
1al expansions. This allows one to reduce the func-
tional equations (2) to the set of nonlinear algebraic
equations. The latter may be solved then by the
Newton technique.

Eq. (2) covers a lot of well-known types of critical
dynamics. For instance, taking f=0, we obtain the
equation [2]

&1 (X)=ag(g:(X/a))

for the function g(X)=g(X, 0), covering, depend-
ing on some extra conditions, the Feigenbaum (cod-
imension one) [2], intermittency (codimension
one) [5], tricritical (codimension two) [7] fixed
points. We shall denote them as F, I and T,
respectively.

Eq. (2) has also the fixed point H describing the
critical dynamics of Hamiltonian systems at the bor-
derline of chaos via the period doublings studied with
the help of the RG technigue by several authors [8].
We have reproduced the calculations of this fixed
point by numerically solving eq. {2) and have found
that besides earlier known values dy , =8.72109720
and Jy,=2 [8,9], there are no other essential ei-
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genvalues in the linearized RG operator spectrum.
The perturbations of the fixed point related to dy ,
leave the map in the area preserving class while the
perturbations related to J, , are responsible for the
dissipation. So, in the space of commeon two-dimen-
sional maps the critical behaviour H has codimen-
sion two and may occur during the two-parameter
analysis.

3. The main problem arising while solving eq. (2)
and, therefore, searching for new types of critical be-
haviour consists really in choosing the initial ap-
proximation for the Newton method. We use here a
“going down the codimension™ technique, taking the
case of a function g independent of the second ar-
gument for a starting point because of its relative
simplicity for studying. The corresponding type of
critical dynamics arises in the system of two unidi-
rectionally coupled period doubling subsystems when
they are in strict succession brought just onto the
border of chaos by choosing their own control pa-
rameters. In ref. [10] this situation was called bi-
critical and studied empirically. It may be described
by the model map

F: “Yn+l:1—ix3!7 yn+]=1_A,vI;:_Bx31a (3)

where A, A, B are parameters. The first equation is
independent of the second one and the x component
undergoes period doublings at the known parameter
valuesof 4,=0.75, 1.25, 1.3681, .... Suppose we take
some B> 0. If we start from small enough A for A=4,
in the parameter plane (A, A) one of the period-2*
cycle multipliers of the map (3) is — | and the sec-
ond one is near zero. Increasing 4 along the line A=A,
we may come to the terminal point (4,, 4,) where
the second multiplier is — 1 too. It means a new mode
becomes unstable. Estimation of the limit for the ter-
minal point sequence (4, A,} gives the bicritical
point (4., A4.). For the particular B=0.375 we have
A.=14011551489, 4.=1.124981403.

Further, we may use the map (3) to get an ap-
proximation for the fixed point functions (ga, /5).
For the first, we make N=2* iterations of the point
(0, 0) and find the scale factors X¥=xy, Y=yy. Sup-
pose then
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Table 1
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Fixed point B: polynomial approximation for the universal function fz(x, v).
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2

4

6

8

1 X X X X
I 1.000000 —0.596905 —0.032157 0.018457 —-0.000201
¥? —0.855639 —0.302943 0.054630 0.021499 —0.004860
y4 —0.431738 0.087452 0.091136 —0.011023 —0.003242
y® 0.087486 0.180356 0.009298 —-0.0319t4 0.005042
ve 0.152662 0.060337 —-0.096310 0.017439 0.000000
ylo 0.060864 ~0.153737 0.037690 0.000000 0.000000
pi? —0.101867 0.047570 0.000000 0.000000 0.000000
plé 0.026310 0.000000 0.000000 0.000000 0.000000

[11], and the others, dz, and dp;, are responsible
for the appearance of the contradictional coupling.

G,gw(x, Y))_(l/)? 0 )F)N(/? o)(x)
prex v/~ o e 7\y)-
(4)

Note that the calculation results for ¥=32, ..., 256
are in good agreement.

With the above procedure we may obtain the val-
ues of g[¥! and £ ¥ at the points of some net, ap-
proximate them by the orthogonal polynomial ex-
pansions and then take them as an initial point for
the Newton method, which converges strongly. As a
result, we have two functions: gz and f5. The first one
is, obviously, the well known Feigenbaum function
[1,2]: gg( X, Y)=ge(X). The polynomial approxi-
mation for the function f3( X, Y) is presented in ta-
ble 1. The scaling factors a and b, together with the
relevant eigenvalues of the linearized RG operator
(2), are listed in table 2. The eigenvalues dz, and
d5.4 are related to the fixed point perturbations pre-
serving unidirectionality of coupling for the map (3)

Table 2

So, the complete codimension for bicriticality is four.

4. We introduce now an additional term in the map
(3), including the perturbation related to the d,, ei-
genvalue, and consider the map

F'o Xy =1-Ax;—Cy;,

Vos1=1—Ay:—Bx}, (5)

Taking some B, C and small 4, one may observe the
Feigenbaum period doublings with A increasing. We
can find the bifurcation point numerically and then
move along the bifurcation curve towards increasing
A until the modulus of the second multiplier be-
comes unity too. We expect that with increasing cycle
period the found terminal points would accumulate
to some limit (4., 4.) and it would be the critical
point of a new type. The calculations show that for

Universal scaling factors and eigenvalues of the linearized RG operator for considering types of critical behaviour.

a b

g

Codimension

fixed point B

fixed point FQ

RG period-2 cycle C

fixed point F

a=-2.502507876
b=—1.505318159

a=—4.008157849
b=—1.900071670

a’=6.565349940
b =22.120227422
a=—2.502907876

4.66920161
4.2968970
—4.16161049
2.39272443
6.32631925
3.44470967
—1.90007167
92.43126348
4.19244418
466920161

4
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Table 3

Fixed point FQ: polynomial approximations for the universal functions geg (X, v) and fro (X, ¥).
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2

3

1 X X X X X
1 1.000000 0 —0.000003 0 0.000003 0
1.000000 0 —0.000003 0 0.000002 0
y 0 —2.796050 0 0.000233 0] —0.000085
0 —0.711423 0 0.000005 0 0.000000
¥ 0.066947 0 0.210253 0 —0.000092 0
—1.097926 0 0.001860 0 —0.000025 0
¥} 0 1.362135 0 —0.005578 0 0.000688
0 0.086519 0 0.007119 0 0.000000
v* 1.541702 0 —0.158674 0 —0.003899 0
0.157331 0 0.037350 0 —-0.000294 0
v 0 —0.816413 0 —0.016455 0 —0.000362
0 0.043877 0 —~0.003629 0 0.000000
po —1.061435 0 ~0.007651 0 0.009521 0
—-0.018284 0 —0.013299 0 0.000000 0
¥ 0 0.179277 0 0.033055 0 0.000000
0 —0.017820 0 0.000519 0 0.000000
vE 0.197242 0 0.065557 0 —-0.004133 0
—0.005775 0 0.002289 0 0.000000 0
v° 0 —~0.003142 0 —0.010749 0 0.000000
0 0.003437 0 0.000000 0 0.000000
P10 —0.012557 0 —0.018792 0 0.00000 0
0.001913 0 0.000000 0 0.00000 0
small negative C they do converge. The best esti- F: X,.,=0.126103—1.326813X2
mates for parameter values B=0.375. C=—0.25 are
1.=1.654524590, 4.=1.030837593. It is the end ~2.318996X, Y, +0.137564Y2,
point of the Feigenbaum critical line F. Qur com-
putations show also that one may observe quasiper- Y,+1=1-0.375X; -0.655422X, Y,
iodicity arbitrarily close to this point. So, we denote
it as FQ. —1.317223Y2. (6)

We may use now the map (5) at the found point
to get approximations for the functions grg and frq
corresponding to the new fixed point of the RG
equation (2). A difficulty in comparison to the pre-
vious case consists in the lack of coincidence be-
tween the scaling directions in the phase space and
the coordinate axis x, y. Therefore we must turn to
new variables (X, Y), appropriate for the RG equa-
tions. Note that the eigenvectors of a derivative ma-
trix calculated for the cycle element nearest to the
origin of the period-2* cycles tend asymptotically to
the vector (1, 1.1443) with increasing k. This di-
rection we choose as a new Y axis. The X axis di-
rection is not essential *', so we keep the old one. As
a result of the phase space transformation x= X+
Y/1443, y=Y, the map (5) becomes

From this point we can act just like in the previous
case using relations (4) to obtain the functions
gto (X, Y) and f [3) (X, Y). The calculation results
for N=32, 64, 128, are again in good agreement and
substituting them into the Newton procedure we ob-
tain the polynomial approximations for geq and frq
presented in table 3. Note that both functions are in-

! The reason for choosing the second coordinate axis to be ir-
relevant consists in the fact that the change of vanables cor-
responding to a small turning of this axis is related to the li-
nearized RG equation eigenvalue b/a=x0.47 < 1. Therefore, the
perturbation associated with small axis turning decreases
strongly with increasing the number of iterations used to get
estimates of the universal functions.
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variant under inversion (X— — X, Y- —Y). The best
estimates of the scaling factors a, b and relevant ei-
genvalues of the linearized RG operator dg are listed
in table 2.

5. The complete codimension of the FQ point is
three. The perturbations related to the first two ei-
genvalues dpq, and dgq > preserve the inversion in-
variance, and the third one dgy 3 leads out of this
class. We expect that the addition of the latter type
term to the map (5) would cause the appearance of
another type of critical behaviour with codimension
two and, furthermore, it would be a period-2 cycle
of the RG transformation rather than a fixed point
because of the negative dgq 3 value. We consider next
the map

F'u x,p 1 =1=-Axi—Cyi+ex,,
Voe1=1—Ay;—Bxj. (7

One can reproduce for parameter values B=0.375,
C=—0.25, e= —0.12 the procedure developed in the
previous sections and move along the bifurcation
lines in the parameter plane (4, 4) until a new mode
becomes unstable *2. Defining the critical point (4,
A.) as a terminal points sequence limit we obtained
A.=1,581493555745, A.=1.016156060448. Fur-
ther, one can try to get the initial approximations for
the universal functions g and frelating to the period-
2 solution of the RG equations with the use of map
(7) at the critical parameter point but new problems
arise in this way.

In thre first place, the similarity center (point X=0,
Y=0 in the RG equation scaling coordinates) does
not coincide with the origin in the natural phase
variables plane and the procedure must involve the
technique for its estimation. In the second place, ap-
proximations obtained for a reasonable (of the order
of 4096) number of iterations do not hit the attrac-
tion basin of the Newton method. A special proce-
dure was elaborated to make the solution more pre-
cise, based on the construction of consequent
polynomial approximations. At each step of the pro-

*2. As we found, for large enough ¢ the described procedure of

searching the Feigenbaum surface border for the system (7)
may also lead 1o critical behaviour of type H (see section 2).
For instance, for B=0.375, C= —0.25, ¢=0.2 the critical point
His (A.=1.759302100, 4.=1.051352159).
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cedure the expansion factors related to X* for the
function g and to Y for the function f are taken as
parameters, and the critical point is defined as a bi-
furcation lines terminal point sequence limit in this
parameter plane. The scaling center position is de-
fined by the location of period-1, -4, -16 cycle ele-
ments calculated at the critical point. Then the four-
fold iteration and rescaling (just like in (4)) is done
to find the next polynomial approximation and so
on. It is clear that this procedure is suitable not for
the RG cycle case only but for the fixed point too.
By multiple repetition of these calculations the at-
traction basin of the Newton method was reached.
The resultant polynomial approximations for the
functions g and fcorresponding to one of the RG pe-
riod-2 cycle steps are presented in the table 4. The
procedure to make the solution more precise was
carried out until we were sure that its limit functions
coincided with the results of the Newton method.
Note that we use the normalizing conditions in the
form g(0, 0)=1, f(0, 0)=0.1 for computational
reasons.

The found type of critical behaviour is the period-
2 cycle of the RG equation and it differs from the
other known universality classes strongly. We shall
denote it as C (cycle). In this case the reproduction
of the structure of the parameter and phase space in
smaller and smaller scales (scaling) takes place not
under doubling but under quadrupling of the period.
The scale factors and relevant eigenvalues, listed in
table 2, are comparatively large since they are de-
fined over the RG cycle period. The codimension of
the universality class is two, so, the further way
“down the codimension” leads to the known types
of critical behaviour F and I. Our computations con-
firm that the Feigenbaum and intermittency critical
lines intersect at the point C.

6. The relationship between different types of crit-
ical behaviour (universality classes) may be illus-
trated by the following diagram:

H(2)
N
/F(l)<—(j(2)<—FQ(3)<—B(4) .
T(2) (1)

where the designations introduced above are used
and the figures in brackets indicate the codimension.
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Table 4
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Period-2 cycle of RG equations C: polynomial approximations for the universal functions go(x, ) and f(x, v).

1 x?

4 6 8

x x X
1 1.000000 —1.529231 0.019299 0.044942 —0.004036
0.100000 —0.165914 —0.144840 0.041494 —0.000822
v 2.314272 —0.592293 —0.2457%4 0.046360 —0.001546
1.349157 0.221319 —0.278699 0.014219 0.005468
v? 0.999075 0.380929 —0.178697 0.010370 0.002284
0.014409 0.555718 —0.102917 —-0.027465 0.006626
v’ —0.131319 0.289243 —0.045086 —0.006058 0.001836
—0.324387 0.228667 0.037282 —0.020910 0.000000
r? —0.162450 0.074830 0.004415 —0.004505 0.000000
—0.156972 —0.009586 0.040148 —0.002696 —0.002532
¥y —0.044384 0.002051 0.008018 -0.001478 0.000000
—0.012139 —0.035864 0.009577 0.003112 0.000000
»e —0.004093 —0.005277 0.002278 0.000000 0.000000
0.012352 —0.011751 —0.003514 0.002904 0.000000
v’ 0.001581 —0.001742 0.000000 0.000000 0.000000
0.004374 0.000666 —0.002623 0.000000 0.000000
»e 0.000657 -0.000276 0.000000 0.000000 0.000000
—0.000248 0.002362 —0.001140 0.000000 0.000000
¥? 0.000000 0.000000 0.000000 0.000000 0.000000
—0.000321 0.000641 0.000000 0.000000 0.000000

The arrow joining two symbols means that the crit-
ical surface of the first type may be the border of the
critical surface of the second type with the codimen-
sion being one less. Obviously, in an arbitrarily small
neighbourhood of a definite critical point, all types
of critical behaviour are realized, which can be
reached from the corresponding diagram point by
moving along the arrows. We believe that the sup-
posed diagram may serve as a rough sketch of the
critical dynamics types classification scheme.

We discuss now the possibility of experimental re-
alization of new types of critical behaviour. In spite
of high codimension, the bicriticality B has been re-
cently observed in electronic experiments [10] in the
system of two periodically driven nonlinear oscilla-
tors, since the unidirectional coupling was easily car-
ried out with the use of a special amplifier. It is likely
that C and FQ types of critical behaviour may be re-
alized in similar systems with mutual coupling. For-
mally, the codimensions of C and FQ are two and
three, respectively, and they should be searched for
by the two- and three-parameter analysis of the tran-
sition to chaos while moving along the Feigenbaum
critical surface. It should be noted, however, that the
scaling featuring the C point 1s hardly to be observed

because of the presence of the linearized RG oper-
ator eigenvector with cigenvalue only slightly less
than unity (Jdc3=0.93). In practice, it means that in
spite of codimension two, three control parameters
are desirable, the additional one to be used for re-
moving the above slowly decreasing component.

We would like to thank A.P. Kuznetsov for his
reading of a rough draft of this manuscript and
suggestions.
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