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two-dimensional maps: does quantitative universality survive?
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It is shown that some types of quantitative universality occurring at the transition to chaos in two-parameter families of bimodal
one-dimensional maps can be observed also in two-parameter families of two-dimensional dissipative Hénon-like maps.

1. Transition to chaos via period doubling cascade
is widespread in the world of nonlinear dissipative
systems. It is known that this scenario is character-
ized by remarkable properties of universality and
scaling discovered by Feigenbaum using a renor-
malization group (RG) analysis of unimodal (i.e.,
having one extremum ) one-dimensional maps [1,2].

One of the promising extensions of Feigenbaum’s
approach is a theory of period doublings in two-
parameter families of bimodal (i.e., having two ex-
trema) one-dimensional maps [3-9]. It was found
that the boundary of chaos in a bimodal map pa-
rameter plane contains both Feigenbaum’s lines of
period doubling accumulation and a Cantor-like set
of points with special properties. The points of the
latter set will be further referred to as critical points
of codimension two. The simplest representative of
them is a tricritical point [10]. In the parameter plane
tricritical points appear as terminal points of
Feigenbaum’s critical lines.

In this paper we want to discuss the following
question: Does the boundary of chaos in more com-
mon nonlinear systems posses the structure charac-
teristic for bimodal one-dimensional maps? As an
example we consider a class of Hénon-like maps

F: (X’Y)"’(f(x)“D,V,X), (1)

where the function f(x) depends on the two param-
eters A and B and has two extremal points, a max-
imum and a minimum, The parameter D is respon-

sible for engaging the second dimension: when D=0
eq. (1) is reduced to a one-dimensional bimodal
map.

Due to the know result of Collet, Eckmann and
Koch [2] we may be sure that the Feigenbaum seg-
ments of the chaos boundary continue to exist when
D=+0. On the other hand, it was shown that tricrit-
ical points do not survive when the second dimen-
sion is engaged [11]. In typical families of two-
dimensional maps tricriticality appears only as a
phenomenon of a higher codimension three. This re-
sult seems dramatic if we consider the possibility of
theory extension for multidimensional systems.
However, in the present paper we reach a more op-
timistic conclusion. On the basis of numeric results
and some heuristic arguments we assert that other
types of codimension-two criticality survive in
Hénon-like maps. As far as we know, for the non-one-
dimensional case this is the first report on the quan-
titative universality occurring in bimodal one-di-
mensional maps.

2. After the works of Kapral, MacKay and other
investigators [3-9] it is known that codimension-two
critical points at the boundary of chaos are accu-
mulation points of untypical period doubling cas-
cades observed along certain particular paths in a pa-
rameter plane. A set of this trajectories forms a binary
tree, each of the critical points being coded with an
infinite sequence of symbols U and D (or, in an al-
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ternative designation, L and R [4-8]).

The simplest way to find numerically the coordi-
nates of a codimension-two critical point for a one-
dimensional map is to find the accumulation point
of the appropriate sequence of double superstable
cycles. These cycles are defined as cycles having both
extremal points as their elements. A double super-
stable cycle will be referred to as (p, ¢) cycle if the
maximum is mapped to the minimum after p iter-
ations, and the minimum is mapped to the maxi-
mum after g iterations.

To find the (p;, ¢;) cycle sequence for a definite
UD code we use the following rule. We start with a
(p.=1, g,=1) cycle. (The corresponding point in
the parameter plane is usually easy to find.) Then
taking consequently the symbols from the UD code
we calculate p and g,

(Pisrs Giv1)=(Dis Pi +24;), ifU,
=(2p;+q¢,q;), 1fD. (2)

Note that the periods of the cycles appear to be equal
to pi+q,=2"

Each arbitrary infinite UD code generates its own
codimension-two critical point. It means that these
points form a set of the continuum power. However,
in this paper we restrict our consideration to a smaller
class of points having UD codes with periodic tails.

Suppose we take a definite UD code with a tail
formed by a multiple repetition of a k-symbol seg-
ment, and then we find the generated critical point.
At this point the map describing the dynamics over
a long time interval of (2%)” steps is defined (de-
pending on the » normalization condition ) by a uni-
versal function which is determined by the tail type
only. This function g(x) appears to be a solution of
the k-fold iterated Feigenbaum-Cvitanovich RG
equation,

g(x)=ag**(x/a), (3)

where a is a factor which has to be found together
with the solution of (3).

The scaling properties in the vicinity of the critical
point in the parameter space are defined by the so-
lution of an eigenvalue probiem which can be ob-
tained by linearizing the RG equation,
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éh(x):.a(FbV“(x)h(x/a)

+ :Z: Fﬁ"(x)h(g”‘(X/a))+h(g“’“(x/a))) :
(4)
where
d
dé
N=2% k=1,2,3,...

[gN"""‘(C)]) ;

{=gm*l(x/a)

Fﬁ“(x)=(

For each critical point there exist two essential ei-
genvalues 8, and J, which are greater than unity in
modulus and are not connected with infinitesimal
variable changes. These constants are the universal
scaling factors. Choosing the appropriate coordinate
system in the parameter plane (scaling coordinates),
the structure of the domains of different dynamical
regimes is reproduced under rescaling along the axes
by the factors 4, and J,. Respectively, the charac-
teristic time of dynamical regimes is rescaled by a
factor 2%,

The critical points of codimension two (as well as
common Feigenbaum period doubling accumulation
points) possess the following property: at these points
the map has all possible 2”-period cycles. All these
cycles are unstable: a small perturbation Ax appears
to be uAx after a one-cycle period, and |u}>1. pis
called a multiplier. We emphasize the universality of
critical multipliers. In the case of periodic UD codes
this can be formulated in the following way.

At the codimension-two critical point having a k-
period UD code the multipliers of the 2"-period cycles
depend periodically on n. They take universal values
periodically repeated in the proper order (defined
by the code type only), u, i=1, ..., k.

The values g; may be calculated with high preci-
sion if the appropriate solution of the functional
equation (3) is found.

Table | presents the universal constants a, 6, g; for
points with some simple UD codes (see also ref.

(81)*.
3. With the results of the previous section, we can

For footnote see next page.



Volume 184, number 6

Table 1
Universal constants for some codimension-two critical points.
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Code a é .
UUUUUU..., period 1 —1.69030297 7.28768622 - 2.0509405
2.85712414
DDDDDD..., period 1 2.85712414 7.28768622 —2.0509405
2.85712414
UDUDUD..., period 2 —4.86264509 35.9286114 —-2.2751695
14.5957450 —~2.2751695
UUDUUD..., period 3 8.03026759 244.768707 —2.1434758
46.2910330 —2.2539228
—2.2778750
UUDDUU..., period 4 23.61530584 £1275.15727 —-2.1663709
195.693975 ~2.2407195
—2.1663709
—2.2407195
Table 2
Codimension-two critical points for map (5).
Code D A B
UUUUUUUUUL... 0 —0.242698757265 1.951385777782
0.1 - -
0.2 - -
0.3 - -
UDUDUDUDU... 0 —0.158717925945 2.102336520597
0.1 —0.168054744666 2.217010484297
0.2 —0.168801835391 2.335895960921
0.3 —0.184910239985 2.464150590153
UDUUDUUDU... 0 —0.160653611834 2.097746013474
0.1 —-0.169536315710 2.212343535005
0.2 —0.177926918535 2.333635384400
0.3 —~0.185731259347 2.459482435628
UDDUUDDUU... 0 —0.150462468665 2.093181820358
0.1 —0.160001191578 2.211781560499
0.2 —0.168973681291 2.335465492391
0.3 —0.177349557819 2.463397230676
try to find codimension-two critical points for a par- Xpt1 =A~BXy+ X3 —DVp, Vno1=Xn. (5)
ticular two-dimensional Hénon-like map, for
example,

¥ The case of UD codes reproducing themselves under the shift
and symbol exchange U«D requires a special discussion. For
such codes the parameter space topography and the values of
the critical multipliers reproduce themselves not only after k
period doublings, but also after }k. This fact is connected with
the actual equality of the role played by the two extrema of the
bimodal map. The theory of MacKay and van Zeijts [8 ] takes
this fact as one of the basic ideas, but this is not explicitly ev-
ident in the simplified version of the RG analysis used here.

When D=0 it is not difficult to calculate the coor-
dinates of a codimension-two critical point with the
desirable accuracy by estimating the limit point of
the sequence of the double superstable cycles (see
table 2)}. However, when D# 0 we cannot easily re-
produce this method of searching for the critical point
because it is difficult (if possible at all) to outline
the points in the phase space of the two-dimensional
map which play a role analogous to the extrema of
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the one-dimensional map. Hence we shall turn to an
alternative approach.

For a critical point with a certain periodic UD
code, we first find the corresponding values of the
critical multipliers. Then, let us increase the value of
the parameter D from zero and trace the 2”- and 2"*!-
period cycles of the two-dimensional map. Their
multipliers are obtained as eigenvalues of the Jaco-
bian matrices,

I

__(f'(in) -D) (f'(Xz) —D)(f'(xl) —D)
- 1 0/7\ 1 0 1 0
(6)

and J,,,. During the process of tracing we use the
Newton-Raphson technique and choose the values
of 4 and B in such a way that the multipliers the
greatest in modulus remain equal to the universal
numbers 4, and g, ,, respectively. The results should
converge to a definite limit which increasing n. The
critical point for some non-zero parameter D being
found, the existence of the scaling properties which
are characteristic for the universality class can be
verified.

It should be noted that the above developed
method does not hold when we try to apply it to tri-
critical points. The reasons for this were discussed,
in particular, in ref. [11]. We have discovered, how-
ever, that the method holds for other types of crit-
icality. In table 2 we present the coordinates of crit-
ical points with UD codes of period 2, 3, 4 obtained
for the two-dimensional map (5).

4. Our goal is now to ascertain that the critical sit-
uations found can be related to the same classes of
universality found in the RG analysis of bimodal one-
dimensional maps.

Figures 1-3 demonstrate local scaling in the phase
space which is characteristic for the different critical
points. Part a of these figures shows the complete at-
tractors, and parts b-d show the fragments of part a
at several subsequent steps of rescaling. The mag-
nification factors at each step were equal to the ap-
propriate constants a found from the RG analysis
(see table 1). We expect that the figures obtained at
high levels of magnification reproduce the previous
ones. Figures 1-3 show that this is really so.
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Fig. 1. Demonstration of the local scaling at the attractor for the
two-dimensional map (S5) at the critical point with the code
UDUDUD.... The parameter values are 4 = —0.184910239985,
B=2.464150590153, D=0.3, and the rescaling factor a=
4.8626....

In fig. 4 power spectra are compared for the time
series generated by the one- and two-dimensional
maps at critical points of the same type. It should be
noted, that each critical situation possesses its own
type of spectrum with inherent relations between the
subharmonic amplitudes of different levels. Figure 4
demonstrates a good agreement between spectra gen-
erated by one- and two-dimensional maps at critical
points of each definite type. This is otie more con-
vincing proof that their dynamics refer to the same
universality classes.

Finally, we must verify the scaling properties of
the parameter space in the neighborhoods of the crit-
jcal points. Let us calculate the derivatives of the
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multipliers with respect to the parameters A and B
for cycles of period 27, 2"*+* and 2"*2*, and construct
the matrices

M _( un/04  Ou./dB )
"\Opye /A Dpuy.n/B)
a#n+k/aA a,un+‘k/aB)
M, ., = . 7
+k (aun+2k/aA 8ins 24/ OB )

Here k is a period of the UD code. If the perturba-
tion vector r= (A4, AB) corresponds to the eigen-
direction referring to the eigenvalue J; (the direction
of the ith scaling coordinate axis) then we would have
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Fig. 2. Demonstration of the local scaling at the attractor for the
two-dimensional map (5) at the critical point with the code
UDUUDUUD.... The parameter values are A=
—0.185731259347, B=2.459482435628, D=0.3, and the re-
scaling factor a=8.0302....
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h‘\nn+kr‘='6i|mnr- (8)

Thus, the factors J; would be obtained as the eigen-
values of the matrices M 'M, ., (more accurately,
this holds only in the asymptotic case of large n, when
the scaling property is rigorously valid). Table 3
contains the eigenvalues calculated via such a pro-
cedure for the critical points having simple UD codes
of periods 2, 3 and 4. One can see that they are in
good agreement with the data of table 1 found with
the help of the RG analysis.

The above described procedure permits one to es-
timate the eigendirections of scaling as well, they can
be obtained as eigendirections of the matrices

20
a
i e
0 '&x 20
b :
L
¢ . ;
|
\
\\
\
d

Fig. 3. Demonstration of the local scaling at the attractor for the
two-dimensional map (5) at the critical point with the code
UDDUUDDUUDD.... The parameter values are A=
—0.177349557819, B=2.463397230676, D=0.3, and the re-
scaling factora=23.6153....
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Fig. 4. Comparison of the Fourier spectra generated by: (a), (c), (e) the one-dimensional map (eq. (5} for D=0) and (b), (d), (f)
the two~dimensional map (eq. (5) for D=0.3) at the similar critical points of codimension two. Codes: (a), (b) UDUDUD...; (¢), (d)
UDUUDUU...; (e), (f) UDDUUDDUU.... See the parameters 4 and B in table2.

M 'M,. .. Making the calculations for the critical
points from table 2 at D=0.3 and designating the
scaling coordinates as £ and n we obtain:

(i) code UDUDUDUD...

A=-0.1849102+0.819¢—-0.095n,

B=2.4641506+¢+7n, (%)
(ii) code UDUUDUUD...
=—0.1857312+¢£-0.047,

B=2.4594824-0.32{+n, (10)

418

(i11) code UDDUUDDU...
A=—0.1773496+¢(—-0.1557,
B=2.4633972+0.08{+7n. (11)

Figures 5-7 show the numerically obtained topog-
raphy of the (A4, B) parameter plane for map (5) near
three codimension-two critical points. These figures
make use of the scaling coordinated systems. In each
figure a fragment is selected and shown separately
magnified by factors §, and J, along two axes. Here
0, and §, are the respective scaling factors presented
in table 2. We see that the parameter plane topog-
raphy in the selected regions reproduces the whole
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Table 3
Comparison of the empirical parameter space scaling factors ¢,
and 4, with their exact values from the RG analysis.

PHYSICS LETTERS A

Code Cycles used 4, 3
UDUDUDUD... 4-16-64 35.093 17.585
8-32-128 36.582 13.784
16-64-256 35.465 14.934
32-128-512 36.016 14.551
64-256-1024 35.930 14.590
128-512-2048 35.928 14.600
RG result 35.929 14.596
UDUUDUUD... 4-32-256 236.491 52.801
8-64-512 247.697 44.693
16-128-1024 247.312 45.256
32-256-2048 244,659 45.899
64-512-4096 244.839 46.298
RG result 244.769 46.291
UDDUUDDUU... 2-32-512 1261.458 207.753
4-64-1024 1215913 210.063
8-128-2048 1262.414  203.532
16-256-4096 1263.882 194.787
RG result 1275.157 195.694

initial picture under such rescaling. It supports once
more the assertion that the two-dimensional Hénon-
like map behavior belongs to the universality classes
revealed by the RG analysis of one-dimensional bi-
modal maps.

5. The above results give us reasons to suppose that
most of the universal quantitative laws revealed for
the transition to chaos via period doublings in one-
dimensional bimodal maps remain valid for two-
dimensional Hénon-like maps as well. This concerns
not only Feigenbaum’s segments of the chaos bound-
ary, but the codimension-two critical points too, with
the exception of tricritical points which have a UD
code in the form of only one infinitely reported sym-
bol U or D. The reason for such a difference between
tricriticality and other codimension-two critical
points may be explained by the following simple
heuristic arguments.

Suppose, we want to realize some definite codi-
mension-two critical situation in the Hénon-like map
F (see (1)). A map defining the dynamics over the
discrete time interval of 2”7 iterations can be pre-
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Fig. 5. Demonstration of the scaling properties for the parameter
space of map (35), D=0.3. The topography of the dynamical be-
havior is shown in scaling coordinates in the neighborhood of the
critical point generated by the code UDUDUD... . The periods
of the stable cycles are denoted by the corresponding numbers.
The critical point is located exactly at the middle of the diagram.
A selected box is shown separately under magnification by
35.928... and 14.595... along the horizontal and vertical axes,
respectively.

sented as a composite of two maps £? and F? where
the pair (p, ¢) is the nth term of the sequence given
by rule (2). Since the Jacobian of the critical map
F equals D, then the Jacobians of the maps F? and
F?are D? and D, respectively. Because D< 1, both
Jacobians will tend to zero with #—co if both num-
bers p and g tend to infinity. This means that both
F? and F7 will tend to one-dimensional maps, and
this is the case when the theory of one-dimensional
bimodal maps describes adequately the critical be-
havior in the asymptotic case of large 7. The above
condition is, apparently, satisfied for all infinite UD
codes except the tricritical ones.

On the contrary, in the tricritical case, when we
have the repeated symbol U (or D) in the code, the
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0.02

Fig. 6. Demonstration of the scaling properties for the parameter
space of map (5}, D=0.3. The topography of the dynamical be-
havior is shown in scaling coordinates in the neighborhood of the
critical point generated by the code UDUUDUUD... . The pe-
riods of the stable cycles are denoted by the corresponding num-
bers. The critical point is located exactly at the middle of the dia-
giam. A selected box is shown separately under magnification by
244.76... and 46.292... along the horizontal and vertical axes,
respectively.

numbers p, (or g,) will remain constant with in-
creasing n. This means that one of the two maps F?
(or F9) retains in the n—oo limit a finite value of
the Jacobian and does not reduce to a one-dimen-
sional map. Let us demonstrate the consequences of
this statement. Suppose we have for D=0 a situation
where the extremum is mapped to the extremum. So
the composition FPF? has a quartic extremum, and
tricriticality is realized at the limit of the period dou-
bling cascade under this condition. However, one can
see that for D> 0 a quartic extremum does not exist.
To show it more clearly, let us consider an example
- the composite of the maps F”: (x, y)—(x*=Dy,
x) and F% (x, y)—(x2, x). The resultant map F?F¢
{x, y)—(x*~Dx, x) is equivalent to a one-dimen-
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Fig. 7. Demonstration of the scaling properties for the parameter
space of map (5), D=0.3. The topography of the dynamical be-
havior is shown in scaling coordinates in the neighborhood of the
critical point generated by the code UDDUUDDU... . The pe-
riods of the stable cycles are denoted by the corresponding num-
bers. The critical point is located exactly at the middle of the pic-
ture. A selected box is shown separately under magnification by
1275.15... and 195.693... along the horizontal and vertical axes,
respectively,

sional map x— x*— Dx but the quartic extremum ex-
ists at D=0 only.

We conclude that the picture of transition to chaos
in two-dimensional Hénon-like maps cannot be
imagined as a trivial generalization of the one-
dimensional bimodal map picture. Some details are
maintained, and some details do not hold (tricriti-
cality). Thus, the problem of global arrangement of
the chaos boundary in a parameter plane demands
further carefu! investigations. Here we have shown
some important peculiarities concerning the univer-
sal bchavior at the onset of chaos. We believe that
these peculiarities are valid for a wide class of mul-
tidimensional dissipative systems. The developed
methodology can be useful also for understanding the
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behavior of multidimensional generalizations of a
circle map with two inflection points [12].
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