2 Renormalization group, universality
and scaling in dynamics of coupled
map lattices

S. P. Kuznetsov

Russian Academy of Sciences

2.1 Introduction

The concepts of renormalization group (RG), universality and scaling were
formed initially in quantum field theory and in phase transitions theory.
Beginning with Feigenbaum'’s work, they were introduced into the analysis of
nonlinear systems. Thanks to this approach essential progress was achieved
in understanding the nature of transitions to chaos via period-doublings,
intermittency and quasiperiodicity [1-4].

It seems reasonable that the RG approach would also be effective for such
systems as coupled map lattices (CML) [5-12], which are constructed of
blocks with the above-mentioned types of behaviour. The approach may be
briefly described as follows. Having the evolution operator of a spatially
extended system for a certain time interval, we can find the new evolution
operator for some larger interval and undertake the renormalization of
variables to make the new operator as close as possible to the old one. This is
just the RG transformation. We can continue to repeat the process to obtain
a sequence of rescaled evolution operators for increasing time intervals. It
may be found that for some special set of system parameters, the evolution
operator for large values of time becomes invariant under the RG trans-
formation. In other words, it represents the fixed point of some operator RG
equation. This is just the critical situation near which the universality and
scaling are valid. The universality arises because the fixed-point operator is
determined by the structure of RG rather than by the actual form of the
initial evolution operator. Scaling properties depend on the spectrum of
eigenvalues of RG transformation linearized near the fixed point. Each
essential eigenvalue with modulus exceeding 1 is responsible for one essential
parameter of the system and gives a scaling constant for some direction in
parameter space.
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The development of the RG approach must lead to the foundation of a
theory of critical phenomena for the class of spatially extended systems
simulated by CML. This theory will define what classes of universality exist
and what are the dynamical properties of each class. Thereby, the CMLs may
be considered as the most convenient representatives of their universality
classes, being valid not only fer qualitative but also for quantitative des-
cription of complicated spatiotemporal dynamics. Let us turn now to a brief
review of results achieved in this field.

The first questions that arise when we begin to deal with CML are: does
there exist some universality of coupling terms, how many essential para-
meters are needed for its description, and what scaling properties are
inherent in them? These questions were stated and solved for coupled
period-doubling systems in [13, 14]. It was shown that any small coupling is
fully characterized by two essential parameters responsible for inertial
coupling (associated with scaling factor a = —2.5029) and dissipative coup-
ling (scaling factor 2). For coupled maps exhibiting intermittency and
quasiperiodicity the essential types of coupling were revealed by Pikovsky
and colleagues [15, 16].

The RG analysis for spatially extended lattices of period-doubling maps
was developed in my papers (17, 18] and recently by Kook, Ling and Schmidt
[19], where the scaling factors a and 2 were again found. Waller and Kapral
[9] and Kapral [20] have mentioned and explained scaling with constant « for
regions of stability of uniform states for one- and two-dimensional lattices
with linear coupling (with our terminology, this is a case of dominating
inertial coupling). This range will be termed /lartice scaling.

The properties of universality and scaling in continuum limit for spatially
extended systems with symmetric dissipative coupling (or diffusion) were
considered in our works [10, 21, 22]. It was shown that they are connected
with the existence of a fixed-point operator of RG transformation including

rescaling of the spatial variable by a factor of \/5 Renormalization group
analysis and scaling properties for the case of the addition of a few other
types of coupling were considered in [23]. This range will be termed as
continuous scaling.

Scaling with renormalization of spatial variable by \/5 was also found by
Kaspar and Shuster [24] for a chain of piecewise linear maps and by Bohr
and Christensen [25] in numerical calculations with the two-dimensional
lattice of period-doubling maps. Observation of scaling in a structure
generated by the spatial return map for CML with diffusive coupling under
random initial conditions was made by Crutchfield and Kaneko [7].

Aranson, Gaponov-Grekhov and Rabinovich have developed RG analysis
for lattice systems with unidirectional coupling [26]). A new type of critical
behaviour with non-Feigenbaum constants (bicriticality) was found in [27],
and corresponding RG analysis was developed in [28].

In this chapter, consideration will be restricted to lattices of period-
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doubling maps with mutual coupling, which is at present the best-studied
class of CML. The structure of the chapter is as follows. Section 2.2 is
devloted entirely to RG analysis. It begins with the simplest case of two
coupled systems. Then the concepts of lattice and continuous scaling are
introduced and the corresponding RG analysis is expounded. In Sections 2.3
and 2.4 the conclusions following from lattice and continuous scaling are
considered and illustrated by a variety of computer results. In Section 2.5 the
possibility of generalization to higher spatial dimensions is discussed and
some computer illustrations for the two-dimensional case are presented.

2.2 Renormalization group analysis of one-dimensional
coupled map lattices

2.2.1 Two coupled period-doubling systems

The central problem in the construction of CML is how to introduce a
coupling between local maps. How does RG approach help us understand
this problem? We start with the simplest case of two coupled elements. This
plays a key role because the results obtained will allow us to build up easily to
spatially extended lattices by including the pair interactions between neigh-

bouring elements.
Thus, let us take the system of two identical symmetrically coupled maps

Uy =folu,v), v, = folv, ), 2.0

where u, v are dynamical variables for subsystems and f;, is a smooth function
provided that the one-dimensional map u,,, = f,(u,,u,) exhibits Feigen-
baum’s scenario of transition to chaos.

Let us express i, 5, t,_- in terms of 4, v, and make a change of variables
u— uja, v— v/a, where a= —2.502907 is Feigenbaum’s scaling constant.
This defines the RG transformation for f with transition to description of
dynamics through doubling the time step. By using it over and over again, we
obtain the recurrent equation .

St (s v)y=af (fo(ufa. v/a)), £, (v/a, u/a.)), 2.2

where f, gives the form of the map similar to (2.1) for the evolution of u, v
through 2" iterations:

U, o= fo (8 0]y 0 e = folvp, 4p).
Equation (2.2) has the fixed point
S(u,0) =g(u) (2.3)

where g(u) is Feigenbaum's universal function obtained as a solution of the
equation g(u) =ag(g(u/a)) 1, 2].
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Let us find a solution of (2.2) in linear approximation near the fixed point.
Substituting f, (u.v) = g(u) + ¢, (u, v) we have

@y s1 (4, 0) =m o, (u,0) 24

where the linear operator 1 is given by the relation

o(u.v) =alg’ (g (u/a))@(u/a,v/a) + @(g(u/a), g(v/a))].  (2.5)

For large n the solution of (2.4) will be a superposition of eigenfunctions of m
having eigenvalues with modulus exceeding 1. Just as in the Feigenbaum
theory, one must ignore the inessential eigenfunctions associated with
infinitesimal changes of variables in the dynamical equation (2.1).

One class of eigenfunctions contains the functions that do not depend on
the second argument. Of course, they correspond to perturbations of the
fixed point (2.3) that do not include coupling. A unique essential of them is
the function found by Feigenbaum [2]:

®y(u) =1—0.3256514 > —0.0505539 u* + 0.0145598
—0.0008810 ® — 0.0001062 ' + 0.0000198 u'2, (2.6)

with eigenvalue d = 4.669201.

Another class contains the eigenfunctions that depend on both arguments
and correspond to the introduction of coupling. By numerical solution of
(2.4) one can find two such functions [13]:

O, (u,v) =0.6103456v — 0.0578582¢2 + 0.0000007v> — 0.004556v*
+0.0003007¢° — 0.6103407u — 0.0000002uv
— 0.000014ut* + 0.0000105uv* + 0.0578586u?
— 0.0837668u*r — 0.0208688u*v* + 0.0000097:2v3
+ 0.0005982u~¢* + 0.00001094v® + 0.08375171°
+0.00001 L v* — 0.000010123v* + 0.0254254u*
~0.0320244u*r + 0.00197492*1% — 0.0000097u* >
—0.000095u*c* + 0.032048u° — 0.002878 115
+ 0.0057259u8r — 0.0000446u5y — 0.0057469u7
+0.0001322u8 — 0.0002811u8v + 0.0002906u°, 2.7

with eigenvalue v, = a = — 2.502907; and

®,(u, y) = — 1.0586844c + 0.0547721v* + 0.004464v°
—0.0005518¢® + 1.0586824u* + 0.0357628u*v?
+ 0.003456u2v* — 0.0001064u2v° — 0.0905175u*
+ 0.0351256u*v? — 0.0010823u*v* — 0.04309804°
—0.0050244u5v? + 0.00010135v* + 0.0068283u®
+0.0001738x%v? — 0.0003016u'°, (2.8)

with eigenvalue v, = 2. It may be found that there are no additional essential
eigenfunctions [13, 18, 19].
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Now, we can write the explicit relation for the evolution operator for large
n. The corresponding function f, is

Suli,v) = g(u) + £[AS" By (u) + C,@®, (u,v) + C,2°®, (w,v)].  (2.9)

This representation is valid, of course, for sufficiently small deflection from
the fixed point (2.3). However, it involves the following more general
important conclusion.

One can see that for any initial map close to the RG fixed point (2.3) the
asymptotic form of functions f, as well as large temporal scale dynamics of
the system will be governed by three parameters A, C,, C,. So, the structure
of regions of different dynamical behaviour in the space of these parameters
is universal. This structure also has a scaling property because the function
J.. has at the point (A/3, C, /a, C,/2) the same form that the function f, has
at the point (A, C,, C;). At both points the system demonstrates similar
regimes with characteristic scale ratios equal to 2 for the time and a for the
dynamical variables.

It is clear that A corresponds to deflection of the control parameter of
individual maps from the critical point of accumulation of period-doubling
bifurcations, while C, and C, characterize a coupling. The existence of two
types of coupling with different properties relating to RG transformation
means that we should introduce some terminology. For reasons explained
later we call the two types inertial and dissipative couplings, respectively.

Let us now describe the procedure allowing us to represent any weak
coupling as a combination of these types. It is based on a property of
long-period cycles of the map (2.1) belonging to the invariant subspace u = v.
By using the n-fold renormalized evolution operator { f,(u, v), f,(v, )} with
f.(u,v) given by (2.9) the rescaled element of the period-2" cycle is
represented as the fixed point (u,, u,), where u, is the root of the equation
u=g(u). We ask now: how do the multipliers of this cycle u", 4 change in
dependence on n? Calculating the eigenvalues of the derivative matrix for the
map {f,(u,v), f,(v,u)} at the point (u,,u,) we find

WP =g'(u,), 4P =g’ () +£[C, D, @+ C,0,2),  (2.10)

where D; = 3[00,(u,v)/du], , ... Multipliers u* and u! relate to symmetric
and antisymmetric perturbations of the fixed point, respectively.

Thus, for analysis of the ‘composition’ of coupling in a given system of
coupled maps it is necessary to find a sequence of (unstable) period-2" cycles
with u = v at the point 4 = 4, and calculate the derivatives of their multipliers
K, = (6u"/G¢), .. They must obey a relation x, = C, D, a" + C,D,2" and this
allows us to find the coefficients C,, C,,

Let us take, for example, the system of a period-doubling map with linear

coupling

U =f(u)+e(u—~uv), v, =f(v)+ e, —u). 2.1y
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Figure 2.1 Plot for the estimation of coupling composition for the systems of two
period doubling maps with linear (+) and quadratic ( x ) coupling.

Substituting f(u) = A — u?, 1 =1,=1.401155 and performing the proposed
calculations we present the results in Figure 2.1 using coordinates X = (a/2)",
Y =x,27". According to the above argument, the point lie on the straight line
Y=C,D,X+C,D, and we find from the plot that C,D, =1.821 and
C,D, =0.281. So, in this case we have the combination of inertial and
dissipative coupling with the former dominating.

The system with quadratic coupling

u = f(u) +e(f(v) — f(w)), v =) +e(fw)—f(v), (2.12)

may also be presented in an equivalent form of future coupling

U, =f(u)+ e'(v,, =), U = f(v) +&(u, - v, (2.13)
where & =¢/(1 —2¢). In both these cases we find by the same argument
C,D,=0and C, D, =3.202 (see Fig. 2.1). This coupling is fully dissipative.

Then arbitrary relation of inertial and dissipative coupling may be
obtained by the combination of

W =)+ e (y—v) +&,(f(v) — f(w)),
v =Sf(0) + & (v, —u) + &,(f(u) —f(v)). (2.14)

This is a universal model of two weakly coupled symmetric period-doubling
systems containing the full ‘zoo’ of phenomena exhibited by this class in a
region of scaling. So, there is no necessity to study any other systems.

In particular, the pure inertial coupling may be realized by special selection
of coefficients taking into account the data of Figure 2.1:

w, =A—ul+e(l—0.176u)(u,—v,),
v =A—v}+e(l1=0.176v) (v, — u,) (2.15)
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In conclusion we will explain the terminology. It is easy to see that the
coupling in equations (2.12) tends to equalize the instantaneous states of
subsystems (for 0 <& < 1/2). In fact, for any u, v the Jacobi determinant
obeys the inequality J(g) = J(0) < (1 — 2g) < J(0). This gives a basis for the
term ‘dissipative coupling’. On the other hand, due to coupling, the map
(2.15) preserves the memory of the previous state (in the order of u, v) when
the state passes near the origin. This justifies the term ‘inertial coupling’.

222 Long lattice, universal model and lattice scaling

We now turn to consideration of extended one-dimensional CML. We
require the translation invariance to hold and suppose initially that only the
nearest neighbours are coupled. '

The RG analysis is constructed as in the previous section. The fixed point
of RG transformation is the set of uncoupled maps

{9y \)s 9(1,), g(u,,, ) .0}, (2.16)

where m is the spatial index.

Let us consider any small perturbation of the fixed point corresponding to
the inclusion of coupling. For each cell we must take into account the action
from the left and the right neighbours, which may be given, in general, by
different functions ¢(u,,u,_,) and Y(u,, U,y ). (We assume here that
@(u,u)=0, Y(u,u) =0.) For weak coupling both terms must be entered in
the dynamical equation’ additively :

ul-rl.m = g(ul.m) + E[(P(UL,,,, ul.m-l) + lﬂ(“z‘m ’ ul.m+l)]~ (217)

where / is the temporal index.

We can easily check that RG transformation for functions ¢ and ¥ is
obtained again in the form (2.4). For large n, each of these functions will turn
into the linear combination of eigen functions D, D, (see (2.7), (2.8)).
Corresponding coefficients 4,, 4, (for ¢) and B,, B, (for ) will be the
essential parameters of coupling. Furthermore, taking into account the
eigenfunction @, responsible for perturbation of the control parameter, the
following representation of the evolution operator through 2" time steps may
be written for the lattice in rescaled variables:

Upy gnm =gty ) + AX [ (U) s Uy 1) — 1 (U sty - 1)]
+ B2 [ (ty, > Ut ) = P2ty s Uy )
+ CX (D (U s Uy t) = D1 (U s g 1))
+D2[ @2ty s Utmis) = B2y Up 1) + A" Bo(t,). (2.18)

Here, A=(4, — B,)/2, B=(A4,—B,)/2, C= (4, +B,)/2, D=(A,+ B,)/2
are the parameters of antisymmetric inertial, antisymmetric dissipative,
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symmetric inertial and symmetric dissipative coupling respectively. The next
scaling property of CML follows from (2.18): similar dynamics will be
realized at the points of parameter space (A/é, 4/a, B/2, C/a, D/2) and
(A, 4, B, C, D) with rescaling of « by a and doubling of the temporal scale in
the first case. We call it the lattice scaling.

Using the models of two coupled systems discussed in Section 2.2.1, the
lattices may be constructed easily with all types of coupling or with any one
of them. The universal model with parameters suitable for RG analysis may
be written in the form

Ui m=A—ulp+ AL =0.176u,, ) (U)ot — Upm_1)
+ B(uimsy — Ui 1)
+ C(1 =0, 1760, )ty — 20y + Uy )
— D(ul ey — 20} + UE ). 2.19)

The terms of the dissipative coupling have a simple physical interpretation.
The properties of a symmetric term just correspond to the diffusion, while the
antisymmetric one provides the transfer of perturbations along the lattice.

The system with pure diffusion is an interesting caste. Most aspects of its
dynamics have been studied in computer experiments and it is important for
the further development of RG. The next section is devoted to this case.

2.2.3  Lattices with diffusive coupling and renormalization-group
fixed point in continuum limit

For lattices with pure diffusion the revised version of RG may be assumed
including proceeding to continuum limit and rescaling of the spatial
coordinate. This leads to a somewhat more pragmatic type of scaling
allowing us to compare the states of the spatially extended system without
coupling parameter change. We shall now consider this case.

The CML with pure diffusion may be described by (2.19) with
A=B=C=D=0:

Uy m =S () + DU Uy 1) = 21 () + S (U s 1)), (2.20)

or by the future coupling equation for the lattice constructed on the base of
blocks (2.13):

Uoiom =S Wy ) T DUy gy = 20y o+ Uy s 1) (2.21)

Let the local map parameter 4 equal to Feigenbaum’s critical value 1, and
the coupling D be sufficiently small. Then, let us perform the RG procedure
of Section 2.2.2 many times. At each new step we deal with the states of the
lattice concentrated in smaller and smaller intervals of the dynamical
variable (¥ ~ 1/a") while the effective coupling parameter increases as D.2".
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For sufficiently large n the linear approximation (2.9) fails. However, it is

quite reasonable to suppose that in this situation of extremely strong
influence of dissipative coupling only patterns would arise that have a very
small difference between the neighbouring cells. Returning to description
of the situation by the initial dynamical equation, we can proceed to a
continuous spatial variable x and replace the difference term by a derivative:

az
1 (¥) = f04(0) + Doz f (). 2.22)

Now., rescaling the coupling parameter by 2 is equivalent to rescaling the
spatial variable by \/5 So we can redefine the RG transformation for it to
have the fixed-point operator corresponding to a distributed coupled map
medium with diffusion rather than to an uncoupled map lattice.

Let us consider this development of the approach in detail. Denoting the
initial evolution operator by G[u] we use this operator twice and make the
scale change Su(x) = au(x '2). Then the new operator G, [1] = SGoS'[u]is
obtained by evolution through two time steps. Repeating this many times. we
come to the recurrent operator equation

Gn+ 1 [u] = ‘§GnGn§— ! [u]7 (223)

where G, is the renormalized evolution operator for 2" steps. The following
statements should be valid. ’

(1) Let the initial operator G, be the evolution operator of a spatially
extended system constructed from period-doubling cells with diffusive
coupling. Then for the critical value of the cell control parameter the
sequence of operators generated by (2.23) converges to regular limit G. This
operator is the fixed point of the RG equation

Glu] = SGGS ~'[u). (2.24)

(2) The operator G is universal, i.e. it is the same for all systems with
diffusive coupling. The only difference may be in characteristic scales for u
and x.

We notice that both models (2.20) and (2.21) admit factorization in the
form )

up, (x) = Lf(u,). (2.25)

This is no accident. It may be shown that the possibility of such representation
is a sufficient condition for the system to belong to the universality class
associated with the fixed point G. For this class the map f would exhibit
Feigenbaum’s period-doublings and the linear operator must satisfy the
following requirements:

(1) Translation invariance: the operator can be represented in general as
Lu,=Y C,u,_; for discrete systems or as Lu(x) = [C(E)u(x — &)dE for
continuous ones. .
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(2) Symmetry: C,, = C_,, or C(&) = C(—&).

(3) Normalization: Y C,, =1 or [C(&)dE = L. ‘

(4) Locality: the sum &* = )" m*C,, or the integral ¢* = [£2C(£)d¢ is finite.
The value 4 defines the characteristic spatial scale for operator L—diffusion
length per time step.

(5) Dissipativity: the spectrum L(k) = e ~** Le** lies with in the unit circle
(LK) < 1, k#0). :

A mathematically rigorous proof for these statements will not be given
here, but we shall demonstrate the convincing results of its numerical
varification. For this, the following procedure was performed for several
values of the number k& = 1. 2.... 5. We take the CML (2.21) containing M,
cells with periodic boundary conditions. Here M, =26 is an arbitrarily
chosen integer and M, is the integer nearest to 2X2M,. Then. we take the
ensemble of probe functions U,, as the linear combination of the several
sinusoidal components having the wave numbers 2n/M. 47/ M.... with
random amplitudes and phases. We also perform normalization such that
Unin=—1 and U,,, = 1. Then. we give the initial condition for (2.21) as
Ug = Un.a™*and interate this equation 2* times. The end states are shown in
Figure 2.2a,b for two representatives of the ensemble {U,,} in coordinates
X =miM,. Y =ud". These are the plots of the functions G,(L’,] against the
spatial variable. One can see an excellent convergence of the points for
increasing k. The limit is just the result of action of the fixed-point operator G
on the probe function U, (x).

In the same manner we can verify the universality. For this. the above
scheme of calculations is reproduced for several different systems (2.25).
Notice that the lengths of the systems must be chosen to make the value M/d
equal in all the cases. Examples of such calculations are presented in Figure
2.2¢,d for three systems. One can see that the configurations obtained for
sufficiently large k=5 coincide very well in full accordance with our
hypothesis of universality.

2.2.4  Universal model in continuum limit

Following the logic of the RG approach. we must now turn to the analysis of
solutions for the RG equation (2.23) near the fixed point G. Substituting
G,[u} = G[u] + ¢h,[u] into (2.23) and supposing ¢ « 1, we obtain the operator
equation :

h,, [u] = SG'(GS~'[u])h,S ™ [u] + Sh,GS~ [u], (2.26)

where G'(GS ~'[u]) is the Fréchet derivative of the operator G. The last
equation has a structure 4, ,[u] = Mh [u], where M is the linear operator.
One may expect that the asymptotics of the solution 4, will be defined by the
superposition of eigenvectors of the operator M with larger moduli of
eigenvalues. Fortunately, these eigenvalues as well as the nnecessary infor-
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Figure 22 Results of numerical verification of existence and universality of the
fixed-point operator G for one-dimensional lattices with diffusive coupling for the
critical value of the control parameter 4: (a, b) the results of 2A0), 4(A), 8(V), 16(+)
and 32( x ) iterations of (2.21) in renormalized form (see text) for two probe initial
functions; D = 0.8, the number of lattice elements M = 26, 37, 52, 73, 104; (c,d) the
results of 32 iterations with two probe initial functions for three models : the future
coupling system (2.21) with D =2(+) and systems of form (2.25) with L being the
averaging operator over 3(A) and 5(V) neigbours.

" mation about the structure of the eigenvectors may be found without formal
solution of the operator eigenproblem.

Let us return to the universal representation of the evolution operator near
the lattice fixed point and include only the perturbations responsible for the
diffusion and one of the additional types of coupling, for example A :

Uy m =Gl ) + A[¢l(ul,m’ Upms1) = ¢l(u1,m, Upm-y)]
+ D[D2(u) s g+ y) + ®2(u; s U 1)1 (227
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Let

A« D«1, (2.28)

i.e.‘the diffusion dominates. Now we can choose one of two ways.

The first way is to proceed immediately to the continuum limit by
replacing differences by spatial derivatives in (2.27) and then performing the
RG transformation (2.23) n and n + 1 times. Thanks to (2.28) it is possible to
select n so as to provide operators G, = G + 4h, and G, , = G + Ah, , close
to the fixed point G.

The second way is first to perform the lattice RG transformation (Section
2.2.2), proceed to the continuum limit, and then rescale the spatial variable
by \/5 Then, the diffusive term does not change while the A4-type term
accepts the factor a/\/i. Then we perform the RG transformation (2.23) n
times and obtain the operator G, = G + Ah,,a/\/f, which must coincide with
the above operator G, ,. So, we have A, , = h,,a/ﬁ, i.e. the operator that
arises from the given initial perturbation through n steps of re-
normalization is just the eigenvector of equation (2.26) with eigenvalue
v, =a/ﬁ = — 1.7698. We denote this eigenvector by H,. In a similar
manner, we can show that including other additional types of coupling gives
the eigenvectors H, and H; with eigenvalues v, = ﬁ =1.4142 and
vy=af2 = —1.2512. Of course, the eigenvector F, must be added with
eigenvalue 6 = 4.6692 corresponding to perturbation of the local map control
parameter.

A B ¢
o1 HT conTINuous
— =1 ITICAL

: LINE

D

b
Pl LATTICE
L of € CRITICAL
= {] romr

CONTROL PARAMETER ~———3»

Figure 2.3  Explanation of relation between lattice and continuous scaling for the
system with diffusion. The sequences of the regions are shown in the same sense for
the former (a, b, ¢) and latter (4, B, C) types of scaling.
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Thus, we can now give the formulation of the continuous scaling.

In the continuum limit the spatially distributed system with dominating
diffusion is characterized by four essential parameters A,z,f,y—the
coefficients at the eigenvectors H,, H,, H,, H,. The space of the parameters
has the property of scale invariance under change of parameters A — A/d,
x—2/v,, f—pB/vy, 7—7/vy accompanied by rescaling of the dynamical
variable u by 1/a. doubling of the temporal scale. and increasing of the spatial
scale by \/5

Figure 2.3 explains the relation between lattice scaling and continuous
scaling for the simplest case of the system with pure diffusion. In the plot of
the control parameter against the coupling constant the critical point
associated with the fixed point of the lattice RG transformation exists. and
the critical line occurs where the long time evolution operator converges to
the universal operator G. Two sets of regions are also shown, which are
similar in the sense of the lattice scaling (a.b,c) and in the sense of the
continuous scaling (A, B.C).

2.3 Lattice scaling in the dynamics of coupled map systems

The aim of our further study is to show what conclusions may be drawn
about the spatiotemporal dynamics of the CMLs on the basis of a developed
RG approach. In this section we restrict ourselves to systems with symmetric
coupling and concentrate our attention on lattice scaling. The concept of
scaling will lead us to the organizing principle of the hierarchical structure of
parameter space near the critical situation. But to reveal this structure we
must turn to computer simulation. Here we use results obtained by several
authors. So, some inconsistency in notation and normalization of dynamical
equations is inevitable.

The simplest illustration of lattice scaling is the system of two coupled
period-doubling maps. It plays here only a subsidiary role, so the reader is
referred to specialized works [30-34] for detailed discussion of its dynamics.
We shall only consider some examples of similar sustained dynamical
regimes.

In the left-hand columns of Figures 2.4 and 2.5 a general view of attractors
- is given for the systems of two maps (2.12) and (2.15) for the cases of pure
dissipative and pure inertial coupling, respectively. The parameters change
downwards in accordance with the appropriate scaling rule (42— /iy)—
(. — 4o)/d, ¢ > ¢/2 or e— ¢/a. In the right-hand columns the magnified parts of
the pictures are reproduced which correspond to the marked rectangles.
Their similarity supports the expected scaling. Rigorously speaking, the
scaling is asymptotic and the coincidence is better for higher levels the
resolution.

Notice that in order to observe the similarity of dynamics not only is the
above parameter rescaling necessary, but also the initial condition for the
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Figure 2.4 Illustration of scaling in dynamics of two dissipatively coupled maps
(2.12) with f(u) = 4 — u?. The left-hand column shows the general view of attractors
for i=1.54, £¢=0.06; 4= 143089, ¢=0.03: £=1.40752, ¢ =0.015, respectively (¢ is
halved from one picture to the next the difference £— .4, decreases by ). The
right-hand column depicts the magnified parts inside the smaller rectangles.
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Figure 2.5 Illustration of scaling in dynamics of two systems with inertial coupling
(2.15) for i=1.54, £=0.06; i=1.43089, £=-0.02397; 4 =1.40752, &£=0.009578,
respectively. In contrast to Fig. 2.4 the coupling parameter is rescaled by a.
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system must hit into the basin of the desired attractor. This reservation is _
essential because the coupled maps exhibit multistability only near the
considered critical point (4,, 0, 0). In fact, if the uncoupled maps move with a
period of 2" then they may have an arbitrary phase shift by 0, 1, 2, 3,...,
2" — 1 steps, thus many different states of the composite system appear. Also
they are preserved under inclusion of sufficiently weak coupling.

Returning to the spatially extended CML we start again from the lattice
with diffusive coupling and take the dynamical equation in the form used by
Kaneko [8, 29] :

Upoym= 1— lulzma—l - (81/2)(“12"”-1 __2u,2m + ulzm—l)' (229)

with boundary conditions of periodicity u, o = 1, This is just the model
(2.20) with f(u) =1 — Au? and D = ¢/2.

When the control parameter 1 exceeds the value 4, =0.75 (at which the
stable period-2 cycle of the local map appears), the expanded systems have
the possibility of forming domains. Each domain is formed by the lattice cells
oscillating with the same phase. The location of the domains and their sizes
depend on the initial conditions for the lattice.

For larger A the variety and complexity of the possible domain structures
increase. Let us sketch the principle of their classification. It is known that
near the critical point 4, the long-period cycles of the local map have a
hierarchical organization. Their elements are grouped into a sequence of
clusters with decreasing sizes. There are two clusters at the 1st level, four
clusters at the 2nd level and so on (see Fig. 2.6). The connected part of the
lattice where the instantaneous states of the cells are related to the same
cluster at the nth level we call the domain of the nth order. The spatial region
that demarcates the domains of the nth order is called the domain wall of the

Two clusters of the 1st level

Four clusters of the 2nd level

——— —

» . ) « ] . »
H t

Eight clusters of the 3rd level

AN oo |

Figure 2.6 Cluster structure of the local map attractor in the subscritical range. An
example of a period-8 cycle.
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1.1 1
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Figure 2.7 Lattice scaling in CML with pure diffusion (2.29). The parameters are
J=1.44400, ¢ =0.1; £i=1.41033, £=0.05; 4= 1.40312, ¢=0.025, respectively. The
right-hand pictures show the parts of the left-hand ones inside the smaller rectangles
with vertical size decreasing from one picture to the next by a while the horizontal size
is unchanged.
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nth order. If the length of the domain is sufficiently large other domains of
higher orders exist inside it.

Let us assume that a certain domain structure is formed for definite values
of 4 and a. The property of the lattice scaling allowes us to conclude that a
similar spatial structure may be realized for i—24y+(4+ Ao)/0, €—¢€/2,
u,, - u,,/2 with doubling temporal period. Figure 2.7 shows such an example.
The first picture was obtained for 4= 1.444 and & =0.1 with random initial
conditions. The spatial configurations for several sequential temporal steps
are shown after finishing the transients. Then the rescaling of 4, ¢ and u was
undertaken, and the spatial configurations are again depicted after the decay
of transients. Three levels of the rescaling are presented in the left-hand
column of Figure 2.7. To make the similarity of the structures evident. the
parts of them inside certain rectangles are plotted magnified in the right-hand
column. The magnification along the vertical axis is proportional to a" (n is
the level number) according to the expected scaling. The similarity of the
pictures may be clearly seen.

In the supercritical region of 4 the CML with diffusive coupling exhibits a
variety of types of behaviour—phases classified by Kaneko [8. 29]. His phase
diagram in the (4, &) plane of the model (2.29) is reproduced in Figure 2.3.
The regions of different phases are labeiled FRP (frozen random pattern).
PS (pattern selection), BD (Brownian motion of defects). DT (defect
turbulence), PCI (pattern competition intermittency) and FDT (fully
developed turbulence). Thanks to the RG analysis. one may suppose that the
same pattern of Kaneko phases is reproduced many times in decreasing
scales near the lattice critical point (see Fig. 2.8). The transition to the next
level of scaling, i.e. the realization of the Kaneko phases inside the smaller

nt

0.2

L i

1.4 CONTROL PARAMETIR ) 2.0

0.0

Figure 2.8 Kaneko phase diagram for CML with pure diffusion (2.29) with added
fragments reproducing the same phases near the critical point 4= 1.401155, ¢ =0. See
the text for explanation of the abbreviations.



68 Theory and applications of coupled map lattices

rectangle in the figure demands that we decrease the amplitude of random
initial conditions by a times. Figure 2.9 shows examples of spatiotemporal
diagrams similar to those presented in (8, 29], but relating to the second level
of scaling.

Of course. under transition from the first to the second level only
approximate reproduction of the forms of the regions occurs because we are
attempting to apply the scaling property to too large a domain of the
parameter space. Closer and closer reproducibility is expected for higher
levels.

Let us now consider the lattice with intertial coupling between the cells.

Uy =r— Ui+ C(1 = 01761 )1y iy — 2y Uy my)- (2.30)

again with periodicity conditions u; o = u y- The similar system with linear
coupling was considered by Waller and Kapral (9], but for our model the
scaling property will be observed with higher precision thanks to its special
form.

In the central part of Figure 2.10 the view of the parameter plane (4. C)is
presented showing the domain of stability of spatially uniform states for the
asymptotically long system M > 1. The parts of the boundary denoted by Z
correspond to the ‘zigzag structure’ that appears with a wavelength of 2 (see
examples in the upper pictures of Fig. 2.10). The part of the boundary K is
associated with structures that arise with larger wavelengths depending on
where we cross the boundary (see the examples in the lower pictures of
Fig. 2.10). The horizontal lines are the lines of temporal period-doubling for
the spatially uniform state. The asymptotic scale invariance was previously
noted in [9] and there it was explained for the configuration of the stability
domain reproduced under parameter change by the factors of 6 and x along
the coordinate axes. According to our RG analysis, the scaling properties are
inherent not only in almost uniform states, connected with self-similarity of
the stability region. but also hold for a variety of complex spatial structures
which may arise in the lattice. The upper and lower pictures in Figure 2.10
correspond to the points of similarity in the parameter plane. The initial
conditions used coincide us to a characteristic scale of u (differ by a). One can
see that the configurations inside the small rectangles are similar.

2.4 Continous scaling and dynamics of coupled map lattices

Proceeding to the continuum limit in lattices with diffusion may be done in
two cases: (1) when the coupling is initially large and immediately makes the
states of the neighbouring cells close (this is just the case of the future
coupling models with D » 1), and (2) when those states near the critical
situation with 4 — i, ~ 6" are considered which have the characteristic scale
of the dynamical variable Au ~ a™" for some fixed D. So, the dynamics are
governed by the n-fold renormalized evolution operator with the characteris-
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(a) ) (b)

Figure 2.9 Space-time diagrams reproducing Kaneko phases inside the smaller
chtangle in Fig. 2.8 : (a) PS. /= 1.444, ¢ =0.05; (b) BD., 4= 1.483. £=0.05; (c) DT,
A= 1.492. ¢ =0.05; (d) FDT. /= 1.54, ¢ = 0.05. (¢) PCI, A =1.474, £ = 0.15; (f) FDT,
A= 1.528. ¢ = 0.15. The spatial index is plotted along the horizontal axis and the time
1pdex downwards along the vertical axis. The number of lattice cells is 60; each 64th
time step is shown. The pixesl are white or black according as u is greater or less than
the smallest element of period-2 cycle of the local map.
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Figure 2.10 Domains of stability for spatially uniform states of the long lattice with
inertial coupling and examples of sustained dynamical regimes in several points of the
parameter plane. The configurations inside the rectangles in the top pictures have the
same relationship as those in the lower pictures.
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tic spatial scale (diffusion length) «a\/—lSQ"’2 greater than the lattice step.
This is also valid when the additional types of coupling are presented with
sufficiently small coefficients. These situations are attractive for theoretical
investigation because of the decreasing number of essential parameters. In
particular, only one of them () remains in the case of an asymptotically long
system with pure diffusion. In this section we start from this case and then
consider the inclusion of small additional transfer and inertial coupling.

2.4.1  Domain structures in coupled map lattice with pure diffusion

We have already considered the increasing variety of domain structures
appearing when the control parameter /. goes to the critical value. For the
systems diffusion coupling the width of the domain walls and the smallest
allowed size of the domains increases with the order n proportionally to 2" 2
due to the continuous scaling. At the points of similarity in the j-axis (where
the ratio of values 4 — 4 is J) the domain walls of the nth and (7 + 1)th order

must have similar form and the ratio of spatial scales is \/5 This property is
illustrated in Figure 2.11. In the left-hand column are shown the spatial
configurations containing the domain walls of the order n=1,2.3 for the
future coupling model (2.21). Also depicted are the rectangles whose size
decreases as a™" in the vertical direction and increases as 2" along the
horizontal axis by the rule of continuous scaling. In the right-hand column
the parts of the pictures fitting into the rectangles are reproduced. Compari-
son of these allows us to see that the scaling property works well, except at
the lowest level.

The next interesting property of the domain structures, which has been
noted by several authors in their computations. is the almost complete
independence of the dynamics inside the domain from that of neighbouring
domains [7, 10, 11, 22]. In orther words. the structures with large temporal
periods do not penetrate deeply into the domain walls of the lower order. For
this reason, the domain may be considered as a solitary quasi-isolated
system. Its dynamics are governed by only two essential parameters— 4 and
the domain length M.

In the pure form one can study the dynamics of the one-domain states by
taking the system of finite length under fixed end boundary conditions. It is
remarkable that their concrete form is inessential.

To understand the last statement let us start from the case of the
semi-infinite future coupling system with only one fixed end (4, o=0) and
consider the structure that arises from the uniform initial condition u, ,, =0
at the critical point A= 4,. The result of the computation after ignoring
transients is shown in Figure 2.12. (The full length of the system M = 1000 is
much greater than that part shown.) This is the universal scale-invariant

pattern. Its configuration is shown after rescaling along the axes by @ and ﬁ
(see the lower pictures). Notice that the scaling centre of the pattern does not
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Figure 2.11 Continuous scaling of the domain walls of different levels for the future
coupling system (2.21), D=8, M =100 with periodic boundary conditions. The
left-hand pictures show the general view of space-amplitude plots for £=1.2,
1.35807, 1.39193. Those on the right depict the parts of the structures inside the
rectangles whose vertical sizes decrease from level to level by a while the horizontal

sizes increase by /2.
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Figure 2.12 Space-amplitude plot for universal pattern near local dislocation in the
critical situation £ = 4,. The 2nd and 3rd pictures reproduce those parts of the pattern

inside the rectangles marked in the Ist picture.

coincide with the end of the lattice, but lies at some distance A outside the
system. For the case under consideration A =~ 4.5\/5. At some distance from
the end the pattern would have the same form for any fixed-end boundary
conditions ¥, , = C < 1. Only the value of A depends on the constant C.
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Returning to the system with finite length M >» 1 we will have two ends
with the formation of the above universal patterns near each of them. In the
subcritical region they will interact by their tails. This leads, in particular. to
some shift of period-doubling bifurcations. Because of the continuous scaling
we may assume they satisfy the relation

=8 — K05 " (827", (2.31)

where @ is the universal function, 8 = (M + ZA)/\/B, 4% and K° are constants
in Feigenbaum's relation for the local map (=43 —K°™" and in
particular for f(u)=1—/u* we have #2=1.401155 and K°=0.7245).
Equation (2.31) was varified by special data-processing procedure with very
high precision [10, 21].

A general view of the parameter plane (4, M) and some examples of
ensuing spatial configurations are shown in Figure 2.13. Consider the
evolution of the one-domain state under the adiabatically slow increase of 4.
Initially the period-doubling bifurcations are observed at approximately the
same values of 2% as for the local map (hence we find @(&)— 1 for {— ).
However, the above-discussed universal patterns begin to form near the ends,
initially at the lowest levels of its structure. The spatial scale of the tails
increases with the bifurcation number as 2"2. Beginning with some the
length of the tails becomes comparable with the system size, so the
bifurcation points essentially perturb. The computations show that the
period-doubling bifurcations continue. Here the characteristic spatial scale
of the evolution operator through the period of the cycle would be greater
than the system length. Thus, the system again becomes equivalent to a
one-dimensional map with Feigenbaum’s law of the accumulation of
subsequent period doublings 4, =4, — Ko™" but with new 4, and K. It may
come to agree with the relation (2.31) by an assumption that for {—0 the
function @(&) behaves as

(&) = = (/A" + B, (2.32)

where 4, B and 7*2 log,d = 4.4463 are universal because of the universality
of (). Substituting (2.32) into (2.31) we obtain the relations

o=+ K%0/4)% K= BK°. (2.33)

Numerical estimation based on the data of Figure 2.13 gives 4 = 12.8,
B~ 1.08.

Behaviour equivalent to that of a one-dimensional map also applies for
supercritical 4 so long as the difference J — g is sufficiently small. Here
temporal chaos with simple one-hump spatial structure and windows of
regularity for some narrow intervals of 4 are realized. By increasing 4 and/or
9 we may achieve chaotic modes with more complicated spatial structures or
observe jumps to regular states containing the domains of higher order.

Using the above information on the dynamics of a single domain, we may
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Figure 2.13 Parameter plane (length M vs. control parameter A) for one-domain state
of future coupling system (2.21) with fixed-end boundary conditions (u,o=0,
uy,, =0) and some examples of space—amplitude diagrams for points of the plane

after decay of transients. The initial conditions ug =0 are used.
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come to some conclusions about the behaviour of the multi-domain states in
a long system. Let us suppose that such a state is formed for a subcritical
value of the control parameter. Then increasing 4 leads to transition to chaos
initially inside the larger-length domains while the regular temporal behav-
iour is preserved for the shorter ones. Keeler and Farmer [11] have shown
that in this case random movement of the domain walls is observed. So, the
chaotic dynamics in some domain may change to the regular one and vice
versa, giving rise to the specific spatiotemporal intermittency discovered in
[11].

Continuous scaling may also be illustrated for the developed chaotic states
where the domains structure is completely destroved. We notice the remark-
able circumstance that such states may be realized for an arbitrary small
supercriticality 4 — 4,. As an illustration consider the lattice with future
coupling and periodic boundary conditions. The value of 4 correspond to the
points of band-merging for the local map and the initial conditions are given
as almost uniform spatial states with small random perturbations. Each
picture on the left-hand side of Figure 2.14 shows several consecutive spatial
configurations after some large number of preliminary iterations. The

“spatiotemporal chaos that develops is observed in all cases. However, the
2"-band structure of the local map attractor is preserved. The parts of the
pictures inside the smaller rectangles (with vertical size decreasing as a™" and
horizontal size increasing as 2"'2) are reproduced on the right-hand side of the
figure. Their comparison appears to qualitatively support the expected
scaling in a statistical sense. Quantitative verification of it in terms of the
spatial correlation function was discussed in [22].

2.4.2  Scaling properties of systems with diffusion and weak
additional types of coupling

From the RG point of view, in this section we deal with the vicinity of the
fixed point G. It was shown (Section 2.2.4) that there are three essential types
of perturbations responsible for coupling and each has its own scaling factor
associated with it. They correspond to inclusion of antisymmetric inertial
coupling, antisymmetric dissipative coupling (or transfer), and symmetric
inertial coupling. Following [23], we restrict our consideration to those cases
with the presence of only one of the additional coupling types in addition to
the dominating diffusion and we assume that the length of the system is
sufficient to exclude in practice the influence of its finiteness on the character
of the dynamics. Then, the number of essential parameters will be 2 (the
control parameter 4 and one of the coupling coefficients «, B, y). The lattice
models are constructed specially for each case taking into account the results
of the RG analysis.

For the system with diffusion and antisymmetric inertial coupling let us
take the dynamical equation in the form
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Figure 2.14 Qualitative illustration of scaling in the fully dcvéloped turbulent regimes»
at the points of the local map band-merging. :
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Figure 2.15 The central picture is a parameter plane 4 vs. a for the lat_ticc model with
diffusion and antisymmetric inertial coupling (2.34). D denotes the line of _ temporal
period doubling of quasi-uniform state, ¥ and S are the lines of the travelling waves
that form. The space—amplitude diagrams are shown illustrating the dynamics at

several different points of the parameter plane.
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UWam™= 1:{2' - ulz.m - a(l - 0’ l76ul.m)(ul.m+l —Um— l)]a (234)

where L is the averaging operator over three neighbouring sites. The
boundary conditions will be the fixed ends: u, o =0, u, ,, = 0.

In the central part of Figure 2.15 the parameter plane (4, «) is shown. There
the region of stability may be seen for the quasi-uniform states (i.e. uniform
far from the ends) with different time periods. The boundaries of three types
are presented [23]. They are the lines of onset of absolute instability via
temporal period-doubling (D) and via the travelling waves (W) that appears,
and the line of transition from the quasi-uniform to the wave regime because
of the formation of the internal source of the waves near one of the system
ends (S).

In the upper and lower pictures the characteristic examples of arising
spatial configurations are presented for different regions in the parameter
plane. The bottom right-hand picture exhibits the quasi-uniform state with
temporal period of 2. The bottom left-hand picture shows the quasi-periodic
travelling-wave regime, where the domain walls of the 1st order are spon-
taneously generated and then move from the right to the left. This dynamics
occurs against a background of the period-2 state. The top right-hand picture
is similar and differs by the sign of the coupling parameter. Here the direction
of the movement becomes left to right.

We can see from Figure 2.15 that the plane (4,«) has a scale-invariant
structrure in accordance with the results of RG analysis. The top left-hand
picture corresponds to the point in the (4,a) plane obtained from the
previous one by the scaling rule A— 4y + (1 — 4,)/6, a—»a/(a/\/i). We see
here the generation and movement of the domain walls of the 2nd order
against a background of the period-4 state. The change of the direction of
movement in comparison with the initial case is explained by the negativity

of the scaling constant a/ﬁ.

Figure 2.16 shows the spatiotemporal diagrams illustrating the scaling
property for fair sequential levels. The pixel is depicted as black or white
according as the sign of the dynamical variable u at the corresponding point
is plus or minus. The transition from one picture to the next is accompanied
by increasing system length by approximately \/5 with proportionally
decreasing pixel size. Simultaneously, the step between the depicted temporal
layers is doubled. The pictures obtained are quite similar (except the lowest
level). The alternation of positive and negative pictures is explained by the
negativity of the scaling factor a for the dynamical variable.

To obtain the system with diffusion and transfer we may use the (2.25) but
the linear operator L must be modified to LA,, where A, is the operator of
spatial shift: Agu(x) = u(x — p) and B is the transfer parameter. The spectrum
of the operator LA, will be

e LA™ =1 +ifk — (d* + f2)k?/2 + O(k?).
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Figure 2.16 Space-time diagrams illustrating scaling of patterns arising in the lattice
model (2.34). Boundary conditions of fixed ends u = 0 are used. For (a) the 1st picture
4A=1.05, a=0.32 and each 4th temporal step is shown. For each succeeding picture

the temporal interval is doubled, the lattice length is increased by approximately \/ 2,
the difference /— 4, decreases by 6 and the coupling parameter a changes to

aj(a//2). The pixel is depicted black if u is positive.

Now we construct the lattice linear operator 1:,, with spectrum given by the
said relation with 42 =1/2:

Lt = i+ Bty = th )2+ (18 B2 2)thy | — 2ty + ).
(2.35)

and consider the evolution equation
UWoam= z‘p(l‘ “12,,.)- (2.36)

The boundary condition will be u; o = u,, U =u,, where u, is the fixed
point of the local map for the given 4.
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Figure 2.17 The central picture is a parameter plane i = vs. § for the lattice model
with diffusion and transfer (2.36). D denotes the line of temporal period-doubling for
quasi-uniform state, T is the line of non-dumping spatial oscillations that arise. The
space—-amplitude diagrams are shown illustrating the dynamics at several different
points of the parameter plane.
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Figure 2.17 shows the parameter plane (4, f) and some typical space-
amplitude diagrams at representative points of it. The regions of stability for
period-2" quasi-uniform states are bounded by lines of two types. At the lines
D the absolute instability of the previous state appears, leading to the
temporal period-doubling. At the lines T another route to destruction of
uniformity is realized when the oscillating tail penetrating from one of the
ends into the system becomes spatially non-dumping (see the top right-hand
picture). One of the characteristic peculiarities of the system is the depiction
of so-called spatial period-doublings. Depending on the parameters, the
spatial development leads either to some uniform state with time period 2" or
to the formation of chaotic states through the finite number of spatial period-
doublings. The last phenomena were described in [6, 26] for lattices with
unidirectional coupling.

Note that the configuration of regions in the (4, ) plane has a scale-
invariant structure. The points of similarity are connected by the scaling

relation A— 4, + (A — A,)/9, B—»ﬂ/ﬁ. Figure 2.18 demonstrates the scaling
property of spatial patterns arising at such points. The left hand pictures
depict the general view of space-amplitude diagrams and the right-hand
ones reproduce the parts of them fitting inside the rectangles shown. The
similarity of the right-hand pictures is evident.

Turning to the last case of the system with diffusion and symmetric inertial
coupling, consider the lattice model

UYnim= i‘[’: - ulz.m + 7(1 - 0'176ul,m)(ul.m+l - zul,m + Upm_ 1)]’ (237)
where L is defined as the square of averaging operator:
Lu=(u,,,+ Uy + Uy + 2up, 1, 5)/9.

(This is so the lattice effects decrease in the parameter region that is
interesting from the point of view of the presence of bifurcations.) Periodic
boundary conditions will again be used.

In Figure 2.19 the parameter plane (4,7) is depicted along with space-
amplitude plots for some points. The region of stability of uniform states
with different time periods may be seen in the centre of the shown part of the
(#4,7) plane. The horizontal bifurcation lines demarcate the regions of
period-2" and period-2"*! spatially uniform regimes. The side boundaries
correspond to the appearance of instability at some wavenumber leading to
the formation of spatial patterns. This may be considered as spontaneous
formation of non-moving domain structure.

According to RG analysis, the form of regions in the (4, y) plane must be
invariant under the change i — A, + (4 — 4,)/8, y—7/(a/2). We can see that
the reproduction of the picture in smaller scales is governed by this rule.
Figure 2.20 gives the evidence of scaling properties for patterns which may be
formed at the points of similarity. As before, the left-hand pictures show the
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Figure 2.18 Space- amplitude diagrams illustrating scaling in the lattice model
(2.36). The fixed-end boundary conditions are taken with the end value of u defined
by the fixed point of the local map. The initial conditions are u, ,, = 0. The values of
parameters are £ = 1.3, #=0.55; /= 1.37949, = 0.3889; /= 1.39652, § =0.275. The
right-hand pictures show the parts inside the marked rectangles.
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Figure 2.19 Parameter plane 4 vs. 7 for the lattice model (2.36) with diffusion and
symmetric inertial coupling, and space—amplitude diagrams illustrating the dynamics
at several different points of the plane.
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Figure 2.20 Space-amplitude diagrams illustrating scaling in the lattice model (2.36)
with periodic boundary conditions. The values of parameters are /= 1.3, y= — 1.6;
A=1.37949, y = 1.27851; 4= 1.39652, y = — 1.02162. The right-hand pictures show
the parts inside the marked rectangles.
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general view of the patierns while the right-hand ones depict the parts inside
the smaller rectangles. Note that the initial conditions were chosen to satisfy
the scaling requirements too: the wavelength of small sinusoidal perturba-

tions increased from case to case by approximately \/5

2.5 Renormalization group and scaling in higher spatial dimensions

The generalization of the lattice RG analysis for higher spatial dimensions is
straightforward. Suppose we have, for example, the two-dimensional square
lattrce with period-doubling system in each of the sites. As in Section 2.2, the
fixed point of the lattice RG transformation is given by the system of
uncoupled maps

Coglun ). (2.38)

where m and n are the spatial indices. Restricting ourselves to the case of
symmetrical coupling, let us assume that each site interacts with its four
nearest neighbours in the same manner. The general asymptotic form of the
perturbation of the fixed point is agains constructed with the aid of the
universal functions ®,, ®, and ®,. Thus, we may write in the linear
approximation for the evolution operator through 2* time steps:

Up s 2kmn = 9Up ) + Aé.(bO(ul.m)

+ Cak[(bl(ul‘m.n L ul.m+ 1.n + d)l(u!.m.n’ ul,m- l.n)

+ q)l(l"l.mm ul.m.n +1 ) + (Dl (ul.m.n' ul.m.n- 1 )]

+ Dzk[(bz(ul,m.n’ ul.m+ 1.n + q)Z(I‘l.m.n ’ ul.m~ l.n)

+ (Dz(ul.m.n’ ul.m.n+ 1 ) + (Dl(ui,m.n’ ul.m.n— 1 )]’ (239)
where A, C and D are three essential parameters. Their interpretation and
scaling properties are the same as in the one-dimensional case.

For computer illustration of the lattice scaling we turn to a phenomenon of
frozen domain structures that exists in the two-dimensional lattices with

diffusive coupling due solely to the presence of spatial discretization [8, 35,
36]. We take the evolution equation of the lattice in the form [8, 35]:

U\ mn = 11— )’lll.zm.n
]
- (5 Z)(ulz.m* 1at ulz,m— 1t ulz.m.n+l + ulz.m.n—l —4ulz.m.n)9
(2.40)
with boundary conditions of periodicity

1,00 = UM 0> Upmo = Uy m.N-
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Figure 2.21 Illustrating of lattice scaling for sustained domain structures in two-
dimensional lattice model with pure diffusive coupling (2.40). The lattice has size
10 x 10 and the periodic boundary conditions are used. The left-hand pictures show
the instant spatial configurations repeating at each 2* time step (k =1, 2, 3). The
right-hand pictures reproduce them but with the scaling variable ua” plotted along the
vertical axis. The parameters are /=1.1, e=0.1; /= 1.33666, ¢ =0.05; /= 1.38734,

e=0.025.
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The upper left-hand picture in Figure 2.21 shows the spatial pattern arising
from random initial conditions for some moment of time after completion of
transients in the lattice of size 10 x 10 for coupling parameter & =0.1. This
configuration is the period-2 fixed point of equation (2.40). One- and two-fold
renormalization of parameters and dynamical variable using the scaling rule
i— g+ (A—Ag)/d, e—€/2, u—uja gives the spatial configurations corre-
sponding to period-4 and period-8 fixed points. These are shown in the next
two left-hand pictures after some number of iterations other than the
transients. In the right-hand column the same spatial patterns are reproduced
with renormalization of the vertical axis scale by a. The good match is
evident.

As in the one-dimensional case, multiple iterations of the RG trans-
formation justify proceeding to the continuum limit. (The argument of the
onset of Section 2.2.3 is also valid for higher spatial dimensions.) The
diffusion term will contain the combination of derivatives D(62/dx? + 9%/dy?).
So, the renormalization of D by 2 is equivalent to rescaling of the spatial
variables by \/5 Thus, the RG equation (2.23) and (2.24) remain valid, but
all operators must be considered as acting on functions of two arguments
u(x,y). In particular, Su(x, y)= au(x\/i yﬁ).

Furthermore, we may demonstrate the existence of limit operator G
numerically. To this end the concrete model of the diffusive coupled lattice
(2.40) may be taken for critical value 4, as the definition of the initial
operator G,. Let us take the initial probe functions in the form

u(x.y) = ¥ A, cos[(2ni/M)x + ;] cosl2mj/M)y + ],

where A, @, ¢, are random amplitudes and phases. Then, we may find
numerically and compare the results of the action of the operators
G, =S5"G,S " on the probe function for different values of n. Note that the
selected values of M satisfy the relation M =~ M,-2"2. Figure 2.22 shows the
computation data for two probe functions. It may be seen that the
superposed data for n=3,4,5 coincide very well. (The agreement become
even more exact for larger » but the addition of the data to the plot would
make it illegible.) The universality may be varified in the similar manner too:
any model of the form (2.25) defined on the two-dimensional lattice or on a
continuous two-dimensional medium leads in the critical situation to the
same (up to normalization) operator G. This is true if the initial operator G
satisfies conditions of translation invariance, symmetry, normalization,
locality and dissipativity.

The spectrum of eigenvalues for the linearized fixed-point operator G may
be analysed in the same way as in the one-dimensional case for the symmetric
coupling. There are two essential eigenvectors. The first one has eigenvalue 0
and is responsible for removing the control parameter from the critical point.
The second one arises from the perturbation given in (2.39) by the term
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(a) (b

Figure 2.22 Numerical verification of the existence of the fixed-point operator G for
two-dimensional lattice with diffusive coupling for the critical value of the control
parameter 4. The results of 8, 16 and 32 iterations of (2.40) are presented in
renormalized form (see text) for two probe initial functions. The numbers of sites are
14 x 14, 20 x 20 and 28 x 28; the coupling constant is ¢ =0.4.

proportional to C. It has the eigenvalue a/2 and is responsible for the inertial
coupling.

To demonstrate the continuous scaling consider domain collapse in the
two-dimensional diffusive coupled map lattice. It takes place for systems of
two of more dimensions instead of the frozen domain behaviour in the
one-dimensional systems [8, 35, 36]. The effect is suitable here for the
illustration of continuum-limit behaviour because it is specific to the large
coupling parameters ¢ > 0.35.

According to the scaling property, the domain of (k + 1)th order would
require twice the time interval for its destruction as compared with the
domain of kth order if the ratio of their initial sizes is \/i and the ratio of
deflections for A from the critical value is 1/3.

The evolutions of domains of 2nd and 3rd order may be compared as
shown in Figure 2.23. The lattices (2.40) are taken of size 20 x 20 and 28 x 28
with ratio approximately ﬁ The initial conditions cause the appearance of
the circular-form domain of the required order :

(o for (m — M/2)? +(n — M/2* < M*/9,
Ho.mn = y e, for (m— M/2)? +(n — M/2? > M?/9,

where ug and uy - are the elements of the period-2* cycle of the local map
with k = 2 and 3. The spatial configurations are shown in Figure 2.23 realized



9% Theory-and applications of coupled map lattices

vd
SISO SS 8P

STIP 128 STIP 256

Figure 2.23 Illustration of continuous scaling in the two-dimensional lattice model
with diffusion (2.40), ¢ =0.4. The left- and right-hand columns show consecutive
spatial configurations for two cases under initial conditions causing the formation of
circle domains of 2nd and 3rd order. For the left-hand pictures 4= 1.31, size is
20 x 10. For the right-hand . = 1.38163, size is 28 x 28. The scaling variable is plotted
along the vertical axis.

at several sequential time steps. The scaling variable ua* ! is plotted along
the vertical axis. We can see the developing process of destruction of the
domains with good agreement of the left-hand and right-hand pictures
according to the expected scaling.
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Another illustration of continuous scaling in the two-dimensional system
was presented in [25]. The authors demonstrated the scaling behaviour of
threshold geometric size from which the Lyapunov exponent of the chaotic
spatiotemporal dynamics becomes approximately the same as for the large

system: this size increases by \/2— under decreasing of 1 — 4, by 4.

2.6 Conclusion

In conclusion we shall briefly consider the achievements, disadvantages and
properties of the RG approach to CML.

Thanks to RG analysis, the universality classes represented by CML are
revealed. This allows us to find the full system of CML models for
spatiotemporal dynamics close to the onset of chaos. The concept of scaling
gives a powerful tool for organizing the classifying a variety of results from
empirical computer investigations into CML dynamics.

There are some disadvantages intrinsic to this approach as compared with
the classical Feigenbaum analysis of period-doubling in one-dimensional
maps. One is the larger number of essential parameters and a second is the
severe requirement of translation invariance, which is natural in some
real-life systems, but not in others. Thirdly, not all of the realizable states are
acceptable for RG consideration even at the critical point, in contrast to the
simple period-doubling systems.

In spite of these observations I believe that the information given by RG
analysis for the spatially extended system is invaluable and this point of view
is supported by the results discussed above.

As for possible directions of further investigations using the RG approach,
we may mention the application of CMLs for the description of real systems
dynamics using the universality, the development of the formalism for other
types of local dynamics, more detailed consideration of phenomena in higher
spatial dimensions, and the rigorous mathematical foundation of the RG
approach.
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