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The dynamics of two unidirectionally coupled period-doubling systems is investigated depending
on three relevant parameters (control parameters of subsystems and coupling). There is a
hierarchy of critical behavior types. Feigenbaum'’s critical surfaces existing in the parameter
space are bounded by tricritical lines and intersect along the bicritical line. These lines, in turn,
intersect at a new multicritical point BT. Universality and scaling properties for all the critical
situations are discussed, and the table of critical indices is given.

1. Introduction

It is commonly recognized that the question about
scenarios of transition to chaos plays a fundamental
role in nonlinear science. The question is: What are
typical bifurcation sequences observed under slow
varying control parameters, making the nonlinear
system go from regular to chaotic behavior? As is
generally known, a few scenarios have been revealed
by the works of many investigators: transition to
chaos via period-doubling cascade [Myrberg, 1963;
Sharkovsky, 1964; Metropolis et al., 1973; May,
1976], via intermittence [Afraimovich & Shil’nikov,
1974; Pomeau & Manneville, 1980], and via quasi-
periodicity [Arnold, 1978; Ruelle & Takens, 1971;
Shenker, 1982].

It is remarkable that the question about
scenarios of transition to chaos involves not only
qualitative answers. Indeed, it was discovered that
quantitative universality and scaling properties of
some sort are shown by nonlinear systems near the
onset of chaos. The renormalization group (RG)
approach was adopted for its theoretical founda-
tion, similar to that developed earlier in the phase
transition theory. This principal step was first made
by Feigenbaum [1978, 1979], who considered
the period-doubling systems. Later, analogous
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approaches were developed for cases of intermit-
tence [Hirsh et al., 1982; Hu & Rudnik, 1982] and
quasiperiodicity [Feigenbaum et al., 1982; Ostlund
et al., 1983].

In phase transition theory, the RG approach
is applied to describe the critical behavior of a
substance near the phase transition point (criti-
cal point), when the fluctuations with large spa-
tial scales, essentially exceeding the interatomic
distance, are presented. Similarly, we can speak
about critical phenomena in nonlinear systems hav-
ing in mind the dynamics near the onset of chaos
when large temporal scales are presented, essen-
tially exceeding all other characteristic times of the
system. Using this terminology implies that the
approach is well supported, which advances the con-
cepts of universality, scaling and RG analysis in
favour of qualitative descriptions of the bifurcation
sequences.

In the families of nonlinear systems, depending
on several parameters, new types of critical behav-
ior and universality classes may appear, allowing
the RG analysis (some examples are known [Chang
et al., 1981; Vul et al., 1984; Zisook, 1984]). Such
situations may be called multiparameter criticality.
Each type of multiparameter criticality is character-
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ized by the intrinsic unique structure of the param-
eter space near the critical point having a property
of self-similarity. These structures may be consid-
ered as a generalization of the concept of scenarios
for the multiparameter cases.

In this paper we consider a system of two
unidirectionally coupled period-doubling maps in
the context of multiparameter criticality. One can
find that the codimension-1 critical surfaces exist in
the three-dimensional parameter space where the
Feigenbaum critical behavior takes place.! Mov-
ing transversely to these surfaces, one observes the
standard period-doubling cascade. Moving along
the critical surfaces, one can meet the critical lines
of codimension 2. In turn, these lines have the
codimension-3 critical points at their ends. RG
analysis, universality, and scaling corresponding to
these lines and points are discussed. Every critical
situation is characterized by the definite, specific
fractal attractor, power spectrum, and Lyapunov
exponent dependence on the control parameters.
Some of the considered critical behavior types are
found to be connected with the appearance of mul-
tistability. It provides an opportunity to study and
classify the multistable states in the context of criti-
cal phenomena, taking into account the universality
and scaling properties.

2. Multistability. Double Feigenbaum’s
Point

A model system we are going to study is composed
of two logistic maps:

Tpy1 =1- /\-7731, Yn+1 =1 _Ay121 _vazw (1)

where  and y are dynamical variables characteriz-
ing the states of the first and the second subsystems,
A and A are control parameters, and B is a coupling
parameter.

Coupling in Egs. (1) is represented by the term

Bz2. The suggestion that the coupling is defined

n

'In mathematics, the term “critical point” often designates a
value of argument x at which the derivative of the function
f(z) vanishes. For functions of two or three arguments, they
speak about critical lines or surfaces, having in mind the lines
or surfaces in (z, y)- or (z, y, 2)-space, where the Jacobian
determinant is zero. Our terminology is related rather to
the objects in the parameter space. Particularly, it was
already introduced by physicists [Chang et al., 1981; Geisel
et al., 1981; Shenker & Kadanoff, 1982; Fraser & Kapral,
1984; Bezruchko et al., 1986] and seems suitable and useful
because it underlines the methodologically important and
deep analogy to phase transition theory. Unfortunately, some
confusion of terminology is inevitable.

by a linear term gives the same results. Indeed, if
the model map is chosen in the form

$n+1=1_)‘xfw yn+1=1_a'y721,+537n,
then, assuming X, = Tn—1, Yo = yn/(1 +¢), A =
a(l+¢), B =¢e)/(1+¢), we obtain exactly Egs. (1)
for the variables X,,, Y,,.

The system (1) is characterized by three param-
eters A\, A, B. So, the investigation of its dynamics
consists in analyzing the three-dimensional param-
eter space topography.

If B = 0, the system (1) would break down into
two uncoupled Feigenbaum’s systems demonstrat-
ing period-doubling cascade depending on A or A,
respectively. If we choose suitable parameter val-
ues, each subsystem would have one stable period-
2% cycle. Thus, the composite system will have 2%
states differing one from another by a phase shift
between oscillations in subsystems measured in the
whole number of discrete time steps. These regimes
are modified but remain stable when the coupling
is introduced, at least while the B value is small
enough. Hence, the regions exist in the parameter
space (A, A, B) where the system (1) has a num-
ber of attractors, or, in other words, the regions of
multistability.

Let us fix the A parameter and consider the
second system behavior depending on A and B.
As we have explained just now, the multistability
is intrinsic to our system. It could be understood
and recognized better, if we think about a foliated
(A, B)-surface rather than about the (A, B)-plane.
Each sheet of the surface would associate with one
of the attractors. Overlapping sheets [in projection
onto the (A, B)-plane] correspond just to the pres-
ence of the multistability.

We can get a preliminary perception of the fo-
liated parameter surface by tracing its formation
while increasing A.

While A is less than the first bifurcation value
Ao = 0.75, the stable fixed point is realized in the
first subsystem. The second subsystem is
described simply by the logistic map which is re-
duced to the standard form Y — 1 — AegY?, Ao =
A(1 - B(2A+1—+/1 +4X)/2)?) by the trivial vari-
able change. It does not demonstrate multistability.
Period-doubling bifurcations occur in the second
subsystem at the lines which are defined by an equa-
tion Aef(A4, B) = g, A = 0.75, 1.25, 1.3681, . ..

When X\ becomes greater than Ag, the first sys-
tem undergoes the first period-doubling bifurcation.
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Starting with this moment, the cusp Cy is lo-
cated at the point (Ag, 0) in the (A, B) plane [see
Fig. 1(a)l. Two lines of tangent bifurcations, fold
lines ' fo1(9) and ! f1(1), meet at this point. The par-
tially overlapping sheets forming the shown surface
correspond to the period-2 cycles; three cycles exist
in the region of overlapping. Only two of the sheets
are relevant, the facing one and the back one. They
are associated with the period-2 cycles being stable
in a region near the cusp point. If one goes along
the (A, B)-plane from the right to the left above the
cusp, then the jump from one sheet to another will
take place when crossing the left fold line ! fo1q).
The reverse jump will occur when crossing the right
fold line ! far(1) in the opposite direction.

Moving off the cusp point along the sheets
shown in Fig. 1(a), one can observe the stability
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Fig. 1. Foliated structure of the (A, B) parameter plane
for the second subsystem: (a) period-2 cycle in the first
subsystem, (b) period-4 cycle in the first subsystem. The
cusp points 2022(00) and 2022(01) have the same (A, B) co-
ordinates but belong to different sheets. SO is the in-phase
sheet.

loss of the “parent” period-2 cycle and further bifur-
cations. They are accompanied by the appearance
of more complicated attractors. However, these at-
tractors may be associated with the sheet (at
least, while this attractor does not merge with an
attractor from another sheet).

A bifurcation diagram for the second subsys-
tem is shown in Fig. 2 to illustrate the above state-
ment. The values of y generated by the system are
plotted versus the A parameter for L = 0.85 and
B = —0.1. The diagram was obtained by iterating
some ensemble of initial points distributed along y
axis in order to visualize all existing attractors. It
may be seen that the diagram is a composition of
two overlapped “Feigenbaum’s trees.” Each of them
corresponds to one of the sheets shown in Fig. 1(a).
Note that the period-doubling cascade of the second
subsystem begins from the period-2 cycle because
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Fig. 2. Bifurcation trees for the second subsystem obtained
by iteration of the initial point ensemble: (a) A = 0.85, B =
—0.1 (period-2 cycle in the first subsystem); (b) A = 1.28684,
B = —0.1 (period-4 cycle in the first subsystem).
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it is just a period of external forcing produced by
the first subsystem.

Let us continue further increasing A. After the
second period-doubling bifurcation in the first sub-
system, a new cusp point appears on each of the
above two sheets; both cusps, 2Cy2(g) and *Cay),
are projected to the same point of the (4, B)-plane,
namely, (A1, 0). Accordingly, each of the two sheets
is found to be a foliated surface [see Fig. 1(b)]. The
edges of the newly formed sheets are the fold lines
2f22(00), 2f22(01) and 2f22(10)9 21022(11), respectively.
Figure 2(b) shows a bifurcation diagram of the sec-
ond subsystem for A = 1.28684 and B = —0.1.
Here one can see four overlapping “trees” relating to
four sheets of Fig. 1(b). Now the period-doubling
cascade in the second subsystem begins with the
period-4 cycle.

The process of new cusp formation and sheet
branching continues ad infinitum while A goes to
the critical value A\, = 1.401155... After the nth
doubling in the first subsystem, we find that the
start of the period-doubling cascade in the second
subsystem is given by the period-2" cycle. The
foliated (A, B)-surface have 2" relevant sheets,
2" — 1 cusp points "Cok(; j,...;,) and pairs of fold
lines " fok (j,ig-vi0)1 " f2% (i13p-i51)» Wherek =1,..., m,
0<r<k,i,is,..., ik =0,1. Here 2F defines a
cycle period in the first subsystem, r the index of
the cycle at first given rise to this cusp or fold. A se-
quence i1, 12,.. ., i specifies a sheet in which cusps
and folds lie. Note, that all "Cyx(_ points have the
(A, B) coordinates independent of r and i, namely,
(Ax, 0).

The cusp point sequence Cy converges to the
point (A, Ac, 0) in the parameter space (A, A, B).
This point will be further referred to as a double
Feigenbaum’s point DF. The above process of mul-

tistable state reproduction is associated with the

DF point just like the period-doubling cascade is
associated with the Feigenbaum critical point of an
individual subsystem.

We conclude that the above considered foliated
surfaces, rather than simply the (A, B)-plane, give
suitable “canvases” for graphical presentation of
dynamics dependent on A, B with fixed A. For
convenience, we shall denote the sheets by S0, S1,
S52,... The symbol SM is used for the sheet, if the
subsystems will oscillate with a shift of M time
steps (zn, = Yn+M), When we come along the sheet
to the point B = 0, A = A. We can examine
the sheets consequently and then recognize how are
they joined to form a complete foliated surface. The

So sheet may be called the in-phase sheet. It is just
the facing side of the surfaces in Fig. 1. It is found
that the attractors of this sheet are realized if we
increase A from zero, A and B > 0 being fixed. To
come to any another sheet, one must move along
a definite “slalom-like” path round the cusp points
Czk.

3. Critical Phenomena at the In-Phase
Sheet

Now we turn to the basic subject of our analysis
and consider different types of criticality exhibited
by the system at the onset of chaos. All the criti-
cal situations may be found at the in-phase sheet.
Therefore, it is just the sheet which we shall study
in detail.

Let us return to the case when the stable
period-2 cycle is realized in the first subsystem.
Figure 3 shows the regions of various dynamical
behaviors at two sheets of the (A, B)-surface for
A = 0.85. They form a distinctive configuration
called the crossroad area by Carcasses et al. [1991].
Lines of the period-doubling bifurcations Dgx are
accumulated at the Feigenbaum critical lines F/,
which are the borders of chaos. The region of
period-4 cycle stability contains a new cusp point

1Cy2(g) and fold lines L 2(20) and ! 2(;20). Here the
in-phase sheet branches and becomes the foliated
surface itself. As a result, the crossroad area is
formed. In the region of sheet overlapping two at-
tractors coexist, being two different stable period-4
cycles near the cusp point. If we look at the param-
eter plane structure with better resolution (see the
magnified fragment in Fig. 3), a lot of the crossroad
areas become visible, containing cusps and folds
based on period 8, 16, 32... cycles. Each crossroad
area gives rise to two new crossroad areas, so the
number of them increases as 2" with the order of
the considered period-2" cycles. To generalize the
above identification symbolism for this new set of
cusps and folds, we provide the right superscripts,
being a coding sequence of 0 and 1 (see Fig. 3, where
the first level of the construction is shown).

Let us examine carefully the behavior of the
period-doubling lines D,:;. We start from B = 0
and increase the coupling. At moderate B values,
the Dy lines lie on the same sheet and accumu-
late to the limit line F. Further, the lines D,: go
round different cusp points and continue therefore
on different sheets. It means that the Feigenbaum
critical line breaks at some point. This point is an
accumulation point of certain cusp point sequence
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Fig. 3. Regions of different dynamical regimes in the (A, B) parameter plane for A = 0.85. Cusp points C, fold lines f,
period-doubling lines D, tricritical points T and Feigenbaum critical lines F' are shown, the last lines are marked by shading
from the chaotic region side. The arrows show the eigendirections for the tricritical points.

Table 1, The cusp point sequence, converging to the
T1 point, A = 0.85.

N  Ax By YN 1= Yy [yan
4 1.283293 0.891207 0.113696

8 1.330607 0.716126 —0.070483 —0.466 —1.613

16 1.314539 0.701132 0.043617 1.992 —1.616

32 1.304689 0.701732 —0.026291 2.551 —1.659

64 1.300657 0.702751 0.015662 2.740 —1.679

128 1.299164 0.703224 —0.009287 2.809 —1.686

256 1.298629 0.703407 0.005498 2.845 —1.689

oo 1.298339 0.703509 2.85713 —1.69030

(see Table 1) and is called tricritical.

Tricritical points were introduced into consider-
ation by Chang et al. [1981] when studying a
one-dimensional two-parameter quartic map. Our
problem may be transformed exactly into this form
in the considered case of period-2 oscillations in the
first subsystem. Iterating twice the Egs. (1), we
obtain a map describing the evolution of the second

subsystem over two time steps:

Yn+2 = [1 — Bz? — A(1 — Bx})]
+2(1 — Baj)A%y2 — Ay},

where zg1 = [1/2+ (A —3/4)1/2]/\ are the elements
of the period-2 cycle in the first subsystem. Variable
change y — y[1 — Bz? — A(1 — Bz})?] leads to the
equation:

Ynv2 = 1+ ay? + by}, (2)

where

a=2(1 - Bz})(1 — Bx? — A(1 — Bz2)?)A?, 3)

b= —[A(1 - B2? — A(1 — Bz})?))3.
Note, that the map (2) is a particular case of the
map studied by Carcasses et al. [1991] who found
crossroad areas.

Two tricritical points given by Chang et al.
[1981] have the coordinates (—2.81403, 1.40701) and
(0,-1.59490) in the (a, b) plane. They can be
mapped into the (A, B) plane by solving Egs. (3);
they are Tj(1.29834, 0.70351) and T(1.23075,
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Fig. 4. Regions of different dynamical regimes in the parameter plane of the second subsystem at A = 1.28684 (period-4 cycle

in the first subsystem).
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1.08446) (see Fig. 3). In fact, an infinite set of tri-
critical points exist, each pair associating with an
element of the crossroad area hierarchy (see Kapral
& Fraser [1984]).

According to the results of the RG analysis
[Chang et al., 1981; Kapral & Fraser, 1984], two-
parameter scaling takes place in the vicinity of each
of the tricritical points: the topography of the
parameter plane is reproduced with scale change
along suitable coordinate axes by factors of 671 =
7.28469 and 672 = 2.85713. The corresponding axis
directions (eigendirections) in the (A, B)-plane are
shown by arrows. The first is along the line at which
the second subsystem dynamics over two time steps
obeys a map with quartic extremum, after some
proper dynamical variable change, and the second is
along the Feigenbaum’s critical line. The cusp point
sequence converges geometrically with exponent 615
to the tricritical point along the last eigendirection
too, but from the opposite side (Table 1).

It should be noted here, that the term “tricriti-
cal” was introduced by analogy with the phase tran-
sitions theory: the point is called tricritical if there
exist phase transitions of both the first and the sec-
ond orders in it’s arbitrarily small vicinity [Stanley
et al., 1980]. The first order transitions are asso-
ciated with tangent bifurcations, while the second
order ones with the onset of chaos via the period-
doubling cascade.

Let us now choose the parameter of the first
subsystem in such a way that it would demonstrate
a period-4 cycle. Taking A = 1.28684, we present
the dynamical behavior topography of the foliated
(A, B)-surface in Fig. 4. Again we see the period-
doubling lines D, fold lines f and cusp points C.
Crossroad areas are found in regions of period-
4, 8,... cycles. As before, two types of criticality
are presented, the Feigenbaum lines F' and tricriti-
cal points T'.

Note that searching for tricritical points be-
comes more difficult task than in the model map
(2). We used an alternative algorithm based on an
universal property of the tricriticality. A dynamical
system has all unstable period-2F cycles at the tri-
critical point, their multipliers converge to the uni-
versal value p. = —2.05094004903 at k£ — oo limit.
Let us find the points in the parameter plane at
which the multipliers of period-2* and period-2k+t!
cycles would be both equal to .. The tricritical
point is obtained in the k¥ — oo limit and conver-
gence is very good.

In the same way, one can consider the situa-

tions of the first system oscillations of period-8, 16,
and so on. If we have a period-2¥ cycle in the first
subsystem, the first period-doubling bifurcation in
the second subsystem is accompanied by the ap-
pearance of the period-2¥t1 cycle, and the cusps
based on this cycle give rise to cascades of cross-
road area and cusp formation.

Let us consider now the case of critical param-
eter value A, = 1.401155 in the first subsystem. In
this case new types of critical behavior appear in
the second subsystem. One of them, called bicriti-
cal, was considered by Bezruchko et al. [1986, 1990]
and Kuznetsov et al. [1991]. A bicritical line in the
(A, B) plane may be revealed by retracing the evo-
lution of Feigenbaum’s line in the second subsystem
when A — A.. In Fig. 5 the Feigenbaum’s line is
shown in the (A, B)-plane for A values correspond-
ing to period doubling bifurcation of period 2, 4, 8,
16 cycles in the first subsystem. It may be seen that
when the parameter A value comes close to the crit-
ical value, the lines in the (A, B) plane accumulate
at the bicritical line B. The tricritical points, in
turn, accumulate at some point BT. The DF point
is situated at the opposite end of the bicritical line.

To understand the scaling properties of bicriti-
cality, we may consider any transversal surface
crossing the bicritical line in the three-dimensional
parameter space (A, A, B). Then, the structure of
regions of different dynamical behavior at this sur-
face is reproduced under the scale change by factors
of 6p1 = b = 4.669201 and épz = 2.392724. The
first eigendirection of the two-parameter scaling
coincides with the A-axis direction, and the second
one with that of the A-axis. The bicritical point cor-
responds to the onset of hAyperchaos (chaotic behav-
ior which is characterized by two positive Lyapunov
exponents). Also the term “bicritical” was adopted
from the phase transition theory: two Feigenbaum
critical lines meet here. Usually, this term means
that the lines of the second-order transition lines
meet.

Table 2. The tricritical point sequence conver-
gence to the multicritical point BT.

A Aw AN v 7
1.25 1.279894  0.690210
1.368099  1.173074  0.721136 1.998
1.394046  1.108720  0.784254 2.506
1.399631 1.080086  0.817598 3.034
1.400829 1.071161  0.828522 2.729
1.401155 1.066 0.83505 2.654
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Fig. 5. Convergence of Feigenbaum’s critical lines F' and
their end points — tricritical points T — to the bicritical
line B and multicritical point BT. Critical lines are shown

for parameter values A = 1.25; 1.368099; 1.394046; 1.399631;
and 1.400829.

The BT and DF points correspond to situations
of codimension-3 in our map, and three-parameter
scaling takes place in their vicinities.

To locate the BT point in the (A, A, B)-

parameter space with sufficient accuracy, we ex-

trapolate the bicritical line and a tricritical line
projection onto the A = ). plane up to the point of
their intersection. This is just evaluation for the BT
point coordinates at the in-phase sheet: (1.401155,
1.06620, 0.83505). Universal constants character-
izing the parameter space scaling properties near
the BT point are §pr1 = 8F, 6pT2 = 2.654654 and
5pT3 = 1.541720. The eigendirection related to the
6pr1 factor is along the A-axis, tricritical point se-
quence accumulates along the second eigendirection
and is characterized by the convergence rate 6pr2.
At last, the third eigendirection is the direction of
bicritical line flowing out of the BT point.

The DF point correspond simply to Feigenbaum
criticality in two uncoupled subsystems. So, the
first two scaling factors along the A and A axes of
the parameter space are dpr1 = 0pri2 = 6. The
third scaling factor is §prs = 2. The third eigendi-
rection at the in-phase sheet is given by the line
A+ B = A

The above mentioned universal scaling factors
intrinsic to different types of critical behavior were
really obtained using the RG analysis. This ap-
proach is well known for Feigenbaum criticality and
tricriticality [Feigenbaum, 1978, 1979; Chang et al.,
1981; Kapral & Fraser, 1984]. Therefore, in the next
section, we consider the RG approach covering the
critical situations B, BT and DF.

4. Renormalization Group Analysis

Denoting right-hand functions in Egs. (1) by fo(z)
and go(z, y), one may obtain a map describing the
evolution over two time steps for dynamical vari-
ables £ and y rescaled by some factors a and b in
the following form

Tn+2 = ago(go(zn/a)),
Yn+2 = be(go(xn/a’ fO(xn/a’ yn/b)) .

Let us denote the new right-hand functions by
g1(z) and fi(z, y). The recurrent RG equation
is obtained by multiple repetition of the above
procedure:

Im+1(x) = agm(gm(z/a)),
fm+1($) = bfm(gm(x/a)a fm(z/a’ y/b)) .

Critical behavior corresponds to a fixed point
of this functional map [Kuznetsov et al., 1991]:

9(z) = aglg(a/a)) n
f(l‘, y) = bf(g(a:/a), f(a:/a, y/b)) .
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Fig. 6. Universal function, describing the dynamics at the
multicritical point BT.

To solve these equations means to find the functions
g, f and the factors a, b. Note that under the
normalization conditions g(0) = 1, f(0, 0) = 1, we
have a = (g(1))~! and b = (f(1, 1))~

The first of Egs. (4) describes the behavior
of the first subsystem and is independent of the
second one. The well-known Feigenbaum’s function
g(z) gives a solution to this equation with factor
a=ar = —2,502907.

The second of Eqs. (4) has several solutions
which are of interest to us now. They are responsi-
ble for different critical situations in the second sub-
system. The simplest of them is f(z, y) = g(y) with
b = ap. It corresponds to the DF point. To find
the other solutions, we must solve the system (4)
numerically. The function fp(z, y) for bicritical
behavior may be searched for in the form of a poly-
nomial expansion involving powers of z? and g2,
and that for the BT case, fpr(z, y), involving pow-
ers of z2 and y?. A polynomial approximation for
the function fg(z,y) was found by Kuznetsov
et al. [1991], the scaling factor being b = ap =
—1,505318159. A polynomial approximation for
the fpr(z, v) function is presented in the Appendix.
The plot of the function is shown in Fig. 6. The
scaling factor is b = apr = —1,241661.

Note that, to search for the BT points, one
could use an algorithm similar to that suggested
in Sec. 3 for the tricriticality, using the universal
critical multiplier value p. = —1.398015. However,
convergence of this algorithm is rather weak.

The next step of the RG analysis consists in
studying the evolution of small perturbations of the

fixed point functions g(x), f(z, y) under the succes-
sively applied RG transformation. The first unsta-
ble direction of the RG fixed point corresponds to
a perturbation making the first subsystem go out
from the critical point. It is represented by the
known Feigenbaum’s function hr(z) and the uni-
versal number 67 [Feigenbaum, 1978, 1979]. The
other unstable directions correspond to the pertur-
bations of the second subsystem only. Substituting
fm(z, y) = f(z,y) + 6™H(z, y), one obtains the
following eigenvalue problem:

§H(z, y) = blfy(g(z/a), f(z/a, y/b))H(z/a, y/b)
+ H(g(z/a), f(z/a, y/b))]. (5)

Taking the above functions fpr, fp, and far
as f(zx,y) in the Egs. (5), one may obtain the
other relevant eigenvalues § and the eigenfunctions
H(z, y) for all the types of criticality.

For the DF point, we substitute f(z, y) = g(y)
and b = ap into the Egs. (5), and come to the
equation [Kuznetsov, 1985; Aranson et al., 1988;
Kook et al., 1991]

6H(z, y) = arlg'(9(y/ar))H(z/aF, y/a)
+ H(g(z/ar), g(z/ar))].

Since the model (1) includes even powers of x
and y only, we restrict ourselves to even solutions of
Eq. (5). The first solution is rather trivial:
H(z,y) = hr(y), 6pr = 6. Another solution
has the eigenvalue éprs = 2, and the following
polynomial approximation may be found for the
eigenfunction:

Hprs(z, y) = —1.0586844y + 0.0547721y*
+ 0.004464y® — 0.0005518y8
+ 1.0586824z2 + 0.0357628x2y>
+ 0.003456z°%y* — 0.000106422y°
— 0.0905175z* + 0.0351256zy>
— 0.0010823z%y* — 0.0430980z°
— 0.0050244z%y? + 0.00010132%y*
+ 0.0068283z% + 0.0001738x5y>
—0.000301621° .

It may be shown that there are no other rel-
evant solutions in the even subspace. Thus, the
DF point has three relevant eigenvalues épr1 = oF,
épr2 = 6F, Opr3 = 2, and codimension-3.

For bicriticality B it has been found that the
Eq. (5) has the only greater-than-unity eigenvalue
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oy ¥

A

Fig. 7. Geometry of different types of critical dynam-
ics in the three-dimensional parameter space: F1 and
F2 — Feigenbaum’s critical surfaces, T — tricritical lines, B
— bicritical lines, DF — double Feigenbaum’s point,
BT — multicritical point.

82 = 2.39272443 [Kuznetsov et al., 1991]. Adding
the eigenvalue 6y = &6p, we conclude that the
codimension is two.

For the BT point two relevant solutions of
Eq. (5) exist. The corresponding eigenvalues are
Spre = 2.654654 and épr3 = 1.54172. Accounting
for 6pr1 = 6F, we find that the resultant codimen-
sion of the BT point is three.

5. Hierarchy of Critical Dynamics:
General Discussion

Let us sum up the results. In the (A, A, B) space
there are two Feigenbaum'’s critical surfaces F'1 and
F2 (Fig. 7). The first one is a plane A = X, and the
second one is a surface of complex form, the latter
being a boundary of regions with chaotic behavior
in the second subsystem. These surfaces intersect
along the bicritical line B. The surface F'2 has a
boundary — a line of tricritical points T". The tri-
critical and bicritical lines meet and terminate at
the multicritical BT point. The second end point
of the bicritical line is the DF point. Note, that

Table 3. Quantitative characteristics for the hierarchy of critical dynamics in the case of

unidirectionally coupled Feigenbaum’s systems.

Critical point

type m 6 a u ydB = X
Feigenbaum’s F 1 1 4.66920 —2.50291 —1.6012 13.35 0.69  0.4498
Tricritical 2 1 7.28469 -—1.69030 —2.0509 1040 0.40  0.3491
T 2.85712 0.6603
Bicritical 2 2 4.66920  —2.50291 —-1.6012 1335 0.69  0.4498
B 2.39272  —1.50532 —1.1789 7.98 092 0.7945
Multicritical 3 2 4.66920 —2.50291 —1.6012 13.35 0.69 0.4498
BT 2.65465  —1.24166  —1.3980 6.85 082 0.7100
1.54172 1.6012
Double 3 2 4.66920  —2.50291 —1.6012 13.35 0.69  0.4498
Feigenbaum’s 4.66920 —2.50291 —-1.6012 13.35 0.69  0.4498
DF 2.00000

n — number of relevant parameters (codimension),

m — number of relevant dynamical variables,

§ — scaling factor in the parameter space,
a — scaling factor in the phase space,

u — period-2" cycle multiplier at the critical point,
~, & — factors, characterizing the spectra of oscillations at the critical point (overfall between
neighboring subharmonic levels and nonuniformity of subharmonic amplitude distribution for

a given level of hierarchy),
x — critical indices for Lyapunov exponent.
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Fig. 8. Spectra of oscillations in the second subsystem for
different critical situations: a) Feigenbaum’s point, b} tricrit-
ical point, c) bicritical point, d) multicritical point BT.

any small vicinity of the tricritical line, BT and DF
points contains multistability regions and tangent
bifurcation surfaces.

A definite number of quantitative characteris-
tics is associated with each of the above-listed types
of critical behavior (the number of relevant param-
eters and dynamical variables, scaling factors in the
phase and parameter spaces, critical multipliers of
period-2*¥ cycles and so on). Some of them are pre-
sented in Table 3.

Table 3 also contains scaling factors charac-
terizing the spectra of oscillations in the second
subsystem for different critical situations under
consideration — Feigenbaum’s, tricritical, bicriti-
cal and BT. The spectra themselves are presented
in Fig. 8. Each of them has it’s own special form
and may be useful for identification of the type
of critical dynamics, for example, in experiment.
The spectra possess strongly pronounced hierarchi-
cal organization of subharmonic levels and may be
approximated by the recurrent relation

2 4+ 4% + 208 cos 2

TR s~
S(w/2), sign” + 7, (6)
S(1—-w/2), sign” — 7.

Here a is a scaling factor for the dynamical vari-
able y in the corresponding critical situation (see
Table 4), 3 equals either a? for Feigenbaum’s and

Table 4. Multicritical BT
points in the (A, B) plane.

SM A B
0 1.0662 0.83505
1 0.43845 —1.8155
2 1.38117 —0.26121
3 1.63509 0.18750
4 1.46430 —0.11247
5 1.569822 0.09508
6 1.37970 0.12175
7 1.26741 —0.10066
8 1.44558 —0.05397
9 1.50961 0.04807
10 1.40897 0.05524
11 1.36147  —0.03947
12 1.35843 0.06848
13 1.27107 —0.07521
14 1.40186 —0.04563
15 1.44660 0.03451

bicritical points or o for tricritical and BT points.
The Eq. (6) is a generalization of the well-known
expression for the Feigenbaum’s spectrum obtained
by using the same method [Huberman & Zisook,
1981; Nauenberg & Rudnik, 1981].

As can be seen from Eq. (6), a value of v =
(1/4a2 + 1/4/3?) characterizes a mean overall be-
tween neighboring subharmonic levels, while a value
of &= |2a83/(a? + (?)| characterizes a degree of
nonuniformity of subharmonic amplitude distribu-
tion for a given level of hierarchy.

Lyapunov exponent behavior near the critical
points obeys scaling relations of the next type:

L—-L/2, A—A/JS, (7)
where A is a parameter value count off along some
eigendirection, and § is a scaling factor for this di-
rection. Hence a relation may be obtained for the
Lyapunov exponent envelope

L ~ AX, (8)

where the critical exponent x is defined as x =
In2/In 6. The values of x are also presented in
Table 3.

The structure of other SM sheets appears to
be analogous to that of the in-phase sheet which
was discussed in detail. The same types of critical
dynamics with the same values of scaling factors are
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Fig. 9. Bicritical lines and multicritical points in the (4, B)
plane — “bicritical star.” The integers 0, ... 15 are the num-
bers of the S0, ... S15 sheets where the corresponding lines
lie.

observed. It is an illustration of critical phenomena
universality. However, the location of the critical
points and lines inside the sheet boundary is not
universal.

Figure 9 presents a resultant global arrange-
ment of critical phenomena for different sheets in
the vicinity of the DF point at A = X.;: shown there
are bicritical lines in the (A4, B) plane up to sheet
order M = 15. It is of a star-shaped type with a
center at the DF point. The orders of the sheets
are shown near the rays. Each ray is broken by
the multicritical BT point. The coordinates of all
the BT points shown are presented in Table 4. One
half of rays are located in the semi-plane B < 0 and
the second half in the semi-plane B > 0. Tangent
bifurcations are observed near the DF point from
the opposite side to the bicritical “ray” side in the
boundaries of each sheet, and there are no known
critical behavior here.

6. Conclusion

Thus, so far we have shown the concept of “mov-
ing up codimension” to be fruitful for the theory of
critical phenomena at the onset of chaos. From
this point of view, the main tasks for the theory
are searching for and classifying typical critical

dynamics which are dependent on relevant param-
eter numbers, revealing their inherent universality
and scaling properties, and establishing canonical
models describing each critical situation. The rules
for the coexistence of critical dynamics types in the
parameter space and the methods for searching and
identifying them in experiment are also subjects of
research.

Today, a great number of systems demonstrat-
ing the classical period-doubling scenario of transi-
tion to chaos are known. It is widespread since the
Feigenbaum’s criticality arises typically in systems
with one control parameter (n = 1, see Table 3).
What may be said about possible realizations of the
other types of critical dynamics considered in this
paper?

Tricritical behavior is typical in two-parameter
families of nonlinear systems describing by bi- and
multi-modal one-dimensional maps [Kapral &
Fraser, 1984]. An indication of the tricritical situ-
ation is a characteristic structure of the parameter
plane — the presence of cusp point and crossroad
area hierarchy and the distinctive period-doubling
lines topology (Fig. 3). A similar structure of the
parameter plane can be seen in a number of theoret-
ical and experimental works. A splendid specimen
of this pattern referring to Chua’s circuit [Komuro
et al., 1991] is featured on the front page of the
very first issue of the International Journal of Bi-
furcations and Chaos. It is reasonable to search
for tricriticality in such situations. The considered
case of unidirectionally coupled systems is only one
of many possible examples.

The bicritical behavior and multicritical BT
point are, apparently, characteristic for open flow
systems only, since introducing feedback destroys
these types of critical dynamics. Experimental ob-
servations of bicritical behavior was done by
Bezruchko et al. [1986]. It should be noted that
critical phenomena of such type may occur in a
chain of three, four and greater number of elements
with unidirectional coupling, when an independent
monitoring subsystem parameter is possible.

As for the DF point and related multistability,
they are characteristic for unidirectionally as well
as for mutually coupled period-doubling systems.
Experimentally such multistability was observed by
Bezruchko et al. {1990].
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Appendix

The universal function for the BT critical point:

F(z, y) = 1 — 0.401489y* — 0.647008y® — 0.764338y'2 + 0.948317y'® — 6.512318y° + 23.444001y*
— 51.462786y% + 76.526244y°2 — 69.236797y°¢ + 33.523789y*" — 6.654459y* + 2%(—0.380946
— 0.578270y* — 0.924782y8 + 3.207539y"2 — 27.026345y'6 + 127.361506y>° — 364.218724y%*
+ 676.471413y28 — 793.030007y32 + 560.113033y%6 — 217.468288y%° + 35.712535y*)
+ 2%(—0.150141 — 0.266129y* + 0.922201y® — 13.913457y*2 4 99.471585y'% — 387.166982y°
+937.925631y2% — 1420.505654%® + 1331.993505y°2 — 749.454686y¢ + 231.199927y*°
— 29.871488y) + 25(—0.024968 — 0.021137y* — 1.107687y® + 23.366570y"* — 149.729985y'°
+ 512.519022y%° — 998.517972y>4 + 1136.063481y°® — 749.225002y°2 + 266.722853y
— 40.001237y%°) + 28(—0.002388 + 0.228128y* — 0.111086y° — 13.210179y"? + 106.642684y"°
— 330.857148y%° + 542.154904y4 — 460.181747y°® + 197.645364y? — 33.358334y°°)
+ 210(0.016764 — 0.176914y* + 1.694251y° — 1.908288y'? — 24.025646y'° + 86.009698y°
— 118.632825y%* + 76.052577y% — 19.013144°?) + £'%(—0.003513 + 0.069849y*
— 0.891185¢® + 3.015233y"'% — 3.654160y'6 + 1.461664y*") .



