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Fractal properties are discussed for critical attractors at the onset of chaos in multi-parameter
analysis of one and two-dimensional maps. Each of the critical situations is characterized by
a kind of "visiting card’ containing distinctive scaling constants, generalized dimensions. f(ot)-
spectra, Fourier spectra and other quantifiers. '
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I. INTRODUCTION

Frigenbaum’s attractor arising at the limit point of the period-doubling cascade is one of
classic objects for testing different technique to operate with multifractal sets'. However, this
is only the simplest example of a muitifractal artractor. In this report we describe other kinds
+ of such attractors included in one- and two-dimensional state space. We hope that consideration
of these objects will be interesting both for further developing multifractal formalism and
understanding nonlinear dynamics near the onset of chaos. Various examples of multifractal
attractors appear when we attempt to adopt an idea of scenario of transition to chaos for a case
of several control parameters.

The commoenly recognized research program of the bifurcation and catastrophe theories
traced back to Poincare, is based on considering phenomena in the order of increasing
codimension. The codimension is the minimal number of parameters typifying a phenomenon.
Analogous approach to a problem of transition to chaos we cull a theory of mulii-parameter
criticality, because many people speak about critical phenomena in nonlinear systems having
in mind dynamics at the onset of chaos. Attractors arising in such siuations we call crirical

anractors.

1. CRITICAL ATTRACTORS OF ONE-DIMENSIONAL MAPS

Let us begin with one-parameter families of one-dimensional maps x->f(x), which exhibit
transition to chaos via the period-doubling cascade. It is well known that Feigenbaum’s
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universality is valid in this case™. The simplest representative of this unwersahty class is the
logistic map having one quadratic extremum (see Fig. 1a).

Xpet = 1- ?\'x (1)

The threshold of chaos corresponds to the limit point of the period-doubling bifurcations. A
= 1.40115518909. This is Feigenbaum’s critical point which we denote by F.

~In two-parameter families of one-dimensional maps with two quadratic extrema, there
is a possibility to find a curve y in the parameter plane, which is defined by a condition that
one extremum is mapped into another after one iteration (Fig. 1b). Evidently, at this curve the
two-fold iterated map x=2f(f(x)) has an extremum of the forth order. So, the period- -doubling
cascade (if it is observed while moving along the ¥ curve) obeys a law specific for the map
having a quartic extremum rather than a quadratic one. A limit point of this cascade at the
boundary of chaos is called tricritical point (denoted by symbol T)’. These points appear as
end points of Feigenbaum’s critical lines. For example, in the map

Xpt = A-Bx, + x,’ _ 2)

The 7y curve is given by the equation A=(B/3)'? (1-2B/3), and the tricritical point located, at
this curve has the coordinates A,=-0.242698757265, B,=1.951385777782.

At last, let us turn to three-parameter families of one-dimensional maps x=>{(x). Then
we can single out four distinctive situations, which appear at some curve lines in three
dimensional parameter space:

(i) At the extremum point the function f(x) has zero derivatives of the second and third

order (Fig. tc).

(i1} Function f(x) has both a quadratic extremum and a cubic inflection point, and the

quadratic extremum is mapped to the inflection point (Fig. 1d).

(iit) Function f(x) has both a quadratic extremum and a cubic inflection point, and the

inflection point is mapped to the quadratic extremum (Fig. le).

(iv) Function f(x) has three quadratic extrema, the first extremum being mapped exactly

to the second one and that, in turn, to the third one (Fig. 1f).

(c) ) (e) ()
[ A

(a)

1

Fig.1

The simplest map exhibiting all the situations (i)-(iv) 18

2 4
Xpey = 1 - Ax75, - Bx" - Cx,. 3)



231

At the curve (1), the function f(x) has a quartic extremum. At the curves (ii) and (iii) the
second iteration f(f(x)) has an extremum of the 6th order. At the curve (iv) the third iteration
{(f(f(x))) has an extremum of the 8th order. Thus, if we move along one of the curves (i) -(iv)
and observe a period-doubling cascade, the law of its convergency is the same as in the map
x=21-24 I xpr"'. m=4, 6, 6, 8, respectively. In the case (i) the period-doubling cascade
converges to the T-point, but this vaniant of tricriticality demands three parameters for its
realization. We introduce symbols S, S’, and E for critical behaviour at the onset of chaos in
situations (i1), (iti), and (iv), respectively. The notation stands for the first letters of the
numbers "six"” and "eight”. For the map (3) we find the critical points

T: A=0, B=1.5949013562288, C=0

S: A=1.872448192264, B=-1.625205284712, C=1.094016101529
ST A=1.379909480783, B=-0.557409701182, C=1.181821122325
E: A=2.449366934076, B=-1.260415730596, C=0.700954625016.

Each type of criticality F, T, S, S, and E has its own quantitative universality and scaling
properties. It follows from the fact that a form of the 2*-fold iterated map is given by a
universal function g(x), if we use some normalization of the x variable. The g(x) functions are
fixed points of the Feigenbaum’s renormalization group (RG) equation

gan(X) = g, (g.(x/00,)). . 4)

where @, is a scaling constant fixed by a normalization condition, a,, = 1/g, (1)). A cause of
the universality consists in a possibility to find the g(x) functions as the fixed point solutions
of the RG equation without appellation to any initial map f(x).

The RG equation fixed point corresponding to the typical one-parameter period-
doubling critical behaviour F was obtained by Feigenbaum **. This function g(x) is presented
by polynomial approximation including powers of x*. The corresponding scaling constant is
o = -2.502907876.

To uncover the universality and scaling properties intrinsic to the two- and three-
parameter criticality, we need to tum to a generalization of Feigenbaum’s theory for the maps
with non-quadratic extrema *°. If the extremum order is m then the corresponding solution of
Eq. (4) contains the terms of the | xI ™ | xl *, | xI*™ . In Refs. [8,9] the dependence of
the solutions on m was investigated, while m was any real number. For m=4, 6, and 8 one can
find oy = -1.6903029714, 05 = -1.4677424503, and o, = -1.35801728.

Each of the above cntical situations give rise to a kind of Cantor-like attractor. Local
property of self-similarity consists in reproducing the attractor structure under scale change by
the factor of a near appropriate point in the state space. For Feigenbaum’s case an explicit
procedure is known to construct this set. At first, find a sequence x; generated by a map at the
Feigenbaum’s point, starting from the extremum point x, = (0. At the levels number k=0, 1, 2,
.. the attractor is approximated simply by a unification of 2* segments:

2*
A, - U [x, x._,) - (5)

Ci=1
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The attractor itself is obtained as a limit object for k — e. Such a construction can be adopted
easily for the critical attractors of T, S, S°, and E types.

Using the above procedure and technique of Ref.1 we can calculate the basic
characteristics of the critical attractors as multifractal sets, f(ot)-spectrum and generalized
dimensions. Let us take some definite k-th level of the Cantor-like construction, when the
attractor is approximated by a set of 2* segments of lengths 1. and probabilistic measures p;
= 1/2* are auributed to the segments. Let us define a partition function depending on two
parameters q and T

2t
Tgo-Y p' /4 )
i-1
and require
T, (q. T) = const, k — oo (7

Due to the last condition we obtain a relation between q and t, g = q(t). Then we have
o = (dg/dt)', f=aq-1. D=1/(q1). ®

Changing t as a parameter we find two functions f(a) and D(q) from (8), which give us the
f(a)-spectrum and the spectrum of generalized dimensions, respectively (see Figs. 2 and 3
Note that the plots f(a) and D(q) for two- and three-parameter tricriticality do not differ, an’
for S and S’ types they also coincide.

One more useful charactenstic of critical dynamics is an ordinary Fourier spectrum
These spectra are presented in Fig.4 (a - Feigenbaum’s point, b - tricritical point, ¢c- S-point
and d - E-point). They exhibit an infinite number of subharmonics with frequencies ®
proportional to 2* and have a hierarchical organization: each k-th subharmonic level has less
amplitude than the previous one. However, the quantitative relations between the levels are
specific for each type of criticality.

0.8 Z.4

Fig.2 Fig.3
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A set of distincuve quantitative characteristics including universal functions, scaling factors,
f(a), D(q), and Fourier spectra may be considered as a “visiting card” or "identification" of
cach criticality type. Due to universality, any system of arbitrary physical nature will present
the same "visiting card”, if the definite type of criticality occurs.

- Further analysis of two- and three-parameter families of one-dimensional maps shows
that the above considered types of criticality do not exhaust all possibilities of behaviour at the
onset of chaos via period-doubling cascades. Due to Kapral, MacKay and other authors "'
we know that there exhists an infinite Cantor-like set of codimension-two critical points in a
paramneter plane of onc-dimensional map having two extrema. These points belong o the
soundary ol chaos and appear as limit points of penod-doubling cascades along detinite paths
i the parameter plane. A set of such paths forms a binary tree, and each critical point is coded
hy an infinite sequence of two symbols U and D (in other notation, R and L "',

Coordinates of each codimension-two critical point can be found as a limit of a
sequence of double super-stable cycles (the cycles having both extrema of the considering map
among their elements). If the maximum is mapped into the minimum after p iterations, and the
minimum is mapped into maximum after q iterations, we speak about (p.q)-type cycle.

To construct the sequence (p,.q,), which leads to the critical point with a definite UD-
code, we start from the cycle of the (1,1)-type. Then we take subsequent symbols of the UD-
code and calculate p and q numbers by the relations

-. )y = { (Pis Pi+205), if U, .
(pr-l-'l' ql-ri) {(2pi‘+qi‘ qi)' 1f D | (9)

The type of critical behaviour appears to depend on a structure of the UD-code. In particular,
the codes with tails ...UUUU... and ..DDDD... correspond to tricritical points. If the tail
contains a periodically repeating set of M symbols then the dynamics at the critical point is
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described by a period-M solution of the RG equation (4). For such a solution we define scaliny
factor "over the RG-cycle pertod” as a product of M values of a,. For example, for simpic
codes of period 2. 3, and 4 we have (see also ™ ™):

UDUDUDUD...: o = o, @,,, = -4.8626450906.

UUDUUDUU...: o = ou&,,,04,, =8.0302675872,

UUDDUUDD...: & = 0,04, 04,20, = 23.6153058715.

For the model map (2) we find the following coordinates of critical points with these codes:

UDUDUDUD..., A = -0.1587179259453. B = 2.102336520597,
UUDUUDUU..., A =-0.2211510892692. B = 2.016490507000,
UUDDUUDD.... A = -0.2193259886681. B = 2.017904888546.

Critical attractors at these points also exhibit fine Cantor-like structure. However, the explicit
procedure of their construction is more sophisticated. Let us find two sequences y, and z,
generated by considering a map x — f(x):

0.8 1.0

UuDUYD
f ) UDUDUD
UUDDUUDD SUDULD
UuUpDUUDD |
UDUDUD
0.4
0 Alpha 1.4 -14 q 15
Fig.5 Fig.6

The first starts from the point of the maximum (y,) and the second starts from the minimum
(z4). At the k-th level of the construction we recall the k-th pair (p,q) from the sequence of
double superstable cycles converging to the critical point under consideration. Then we take
p terms of the y, sequence and q terms of the z sequence and define
{ Yo 1<i<p,
X, = 1z, p <1 <pHq. | (101

The numbers x, give ends of segments for the attractor approximating at the k-th level (sec
(5)). The attractor itself is obtained in the limit k — co. Now we can evaluate f(a)-spectra and
D(q)-dependence for critical points having different UD-codes, see Figs.5 and 6. (Note that
dealing with period-M cycle of the RG equation, it is reasonable to use a condition T, =T,
instead of (7) to obtain a fast convergency.) Fig. 7 shows Fourier spectra.
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In a similar manner, an infinite number of criticality types coding by symbolic
sequences can be found also in three-parameter case; then the simplest period-1 codes
correspond to S or E cnitical points.

3. CRITICAL ATTRACTORS IN TWOQO-DIMENSIONAL DISSIPATIVE MAPS

In this section we discuss examples of critical attractors included into two-dimensional state
space. We demonstrate impressive properties of local self-similarity, giving evidence of their
fractal nature. However, these attractors are more complicated than the above considered ones,
and further development of multifractal formalism seems to be needed for their complete
description.

We model two-dimensional map corresponding to the case of unidirectional coupling
of two subsystems:

Xpet = l'l’xzn’ Your = l- A)’In - B:‘czn‘ (l l)

where A, A, B, are parameters, x and y are state vanables of the first and the second
subsystem, respectively. The first equation does not depend on the second one, and the x
component undergoes period-doubling bifurcations at the known parameter values A, = 0.75,
1.25, 1.3680989.... Suppose, we are moving in the (A, A) parameter plane along a line A = A,.
For small A we have one multiplier of the period-2* cycle equal (-1), and the second one near
zero. Increasing A we come to the point where the second multiplier also becomes equal to
(-1). It means that a new mode has come onto the boundary of stability. The found point (A,,
A,) we call the terminal point. Then we repeat the procedure for the next k and so on. The
limit of the terminal point sequence in the case under consideration has been called bicritical



point "*'®. We denote this point by the symbol B. For particular values of B = 0.375 we find
the bicritical point to have the coordinates: A, = 1.40115518909, A, = 1.124981403.  Now
jet us add a quadratic term describing a backward influence of the second subsystem on the
first one:

L l'hzn' Cyln' Yo = 1- Ayzn - sza' (12)
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For fixed B and C and small A we observe Feigenbaum’s cascade, while increasing A. We can
find the bifurcation values of A numerically and trace it under increasing A up to the terminal
point where the moduli of both multipliers are unity, For moderate negative C we find that a
sequence of the terminal points converges to a definite limit. This is the critical point of a new
type. One can meet both period-doubling and quasiperiodicity in its neighbourhood, so we
denote it as FQ. For B=0.375, C=-0.25 we find Aq;=1.65452459, A,=1.03083759.

:ap a) ' b)
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Fig.11
At last, let us include an odd term:
b 1'lx2n' Cyzn + 8X,.,, Your = 1- Ay!n - szn‘ ) “3)

tor fixed B = 0.375, C =-0.25, and £ = -0.12 we have reproduced the procedure of movement
along bifurcation curves in the (A, A) parameter plane up to threshold of instability of a new
muode. It gives a sequence of terminal points converging to the critical point denoted C. For
given values of B, C, and &€ we have found A, = 1.581493555745, A_ = 1.016156060448.

RG analysis of B, FQ, and C types of criticality is based on two-dimensional
generalization of the RG equation (4):

., = ag (g (X/a, Yh), f,(X/o, Y/b)), _
., = b (g.(X/a, Y/b), fi(X/ex, Y/b)), : (14)

The B and FQ types of criticality are associated with two fixed points of the RG equation ',
The scaling factors are oy = o = -2.502907876, bg = -1.505318159 for the bicriticality, and
. Opy = -4.008157849, by, = -1.900071670 for the FQ-point. The C-type criticality corresponds

to a period-2 cycle of the Eq. (14). Scaling factors defined over a period of the RG-cycle are
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o, = 0,0, = 6.565349940 and b, = b,b,,, = 22.120227422.

We emphasize that the “scaling variables” X and Y used in eq.(14) do not necessarily
coincide with variables of an initial map; in general they are connected via a linear variable
change. Taking it into account and having an intention to show the self-similarity of the
attrators with extreme clearance, we present, in Figs.8-10, the plots of attractors for the maps
being solution of Eq.(14), rather than for particular model maps (11)-(13). We observe that the
pictures reproduce themselves under magnification by corresponding factors of o and b alon I\
two coordinate axes. We conclude that these attractors have a fractal nature. In the case o
bicriticality an explicit procedure of the attractor approximation by sets of rectangles was
proposed earlier '*. However, in other cases the question needs further analysis.

In Fig.11 (a) and (b) we show Fourier spectra generated by x and y components of the map
(11) at the bicritical point. Fig.11 (c) and (d) show Fourier spectra generated by maps (12) and
(13) at the FQ and C points. In both cases there is no essential difference between spectra of
x and y components.

4. CONCLUSION

We have discussed a promising approach to research of transition to chaos which may b
called a theory of multiparameter criticality. This is a synthesis of two ideas: (1) an idea ot
searching for and classification of new phenomena in order of their codimension, and (2.
renormalization group analysis. It gives a chance to involve many new examples of multifractal
objects (critical attractors) into investigations on multifractal formalism. It seems to be
important for its further development.
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