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We analyse dynamics generated by quadratic complex map at the accumulation point of the period-tripling cascade (see
Golberg, Sinai, and Khanin, Usp. Mat. Nauk. V. 38, No 1, 1983, 159; Cvitanović and Myrheim, Phys. Lett. A94, No 8,
1983, 329). It is shown that in general this kind of the universal behavior does not survive the translation two-dimensional
real maps violating the Cauchy –Riemann equations. In the extended parameter space of the two-dimensional maps the
scaling properties are determined by two complex universal constants. One of them corresponds to perturbations retaining
the map in the complex-analytic class and equals δ1 ∼= 4.6002 − 8.9812i in accordance with the mentioned works. The
second constant δ2 ∼= 2.5872 + 1.8067i is responsible for violation of the analyticity. Graphical illustrations of scaling
properties associated with both these constants are presented. We conclude that in the extended parameter space of the
two-dimensional maps the period tripling universal behavior appears as a phenomenon of codimension 4.

The paper is dedicated to the 150-th anniversary of Sofia Kovalevskaya

1. Introduction

One of the most popular illustrations in the nonlinear science is a picture of the Mandelbrot set [1, 2]
(Fig. 1). This is the set of points on the plane of complex parameter λ, at which the iterations of the
complex quadratic map

z′ = λ− z2, λ, z ∈ C (1.1)

starting from the critical point z = 0 never go to infinity. (Here the prime marks the dynamical
variable relating to the next iteration, i. e. to the next moment of the discrete time.)

The Mandelbrot set has subtle and complicated structure, which is a subject of numerous re-
searches. Objects analogous to the Mandelbrot set are also presented in parameter spaces of other
complex analytic iterative maps [2, 3]. It is worth stressing that instead of the one-dimensional com-
plex analytic maps we can consider an equivalent class of two-dimensional real maps satisfying the
Cauchy–Riemann equations.

It is used to regard the Mandelbrot set as a classic example of fractal, which suggests a sort of
self-similarity, or scaling. In fact, as shown by Milnor [4], the “hairiness” intrinsic to the Mandelbrot
set does not reproduce itself on deep levels of resolution of the small-scale structure, but becomes
more expressed there. So, the property of self-similarity should be related rather to a definite subset
called “the Mandelbrot cactus” [4, 5]. The cactus includes the domain of existence of a stable fixed
point and domains of stable orbits of different periods, which originate from the fixed point via all
possible bifurcation sequences (see the gray colored part of the picture in Fig. 1).
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GSK

Fig. 1. Mandelbrot set for complex analytic quadratic map (1.1). The gray colored areas form the Mandelbrot
cactus. Periods associated with the leaves of the cactus are designated by the respective numbers. Two frames
mark areas of scaling near the points of period-doubling and period-tripling

One particular manifestation of scaling on the cactus is associated with the Feigenbaum period-
doubling cascade. The leaves of the cactus are placed along the real axis and corresponded to stable at-
tractive orbits of period 2, 4, 8, . . . , 2k, . . . . They reproduce each other more and more precisely under
subsequent magnification by the universal scaling factor defined by the real constant δF ∼= 4.6692. The
limit point of the period-doubling accumulation is placed on the real axis at λdbl = 1.401155189 . . . .
The scaling properties intrinsic to the neighborhood of this point follow from the renormalization
group (RG) analysis developed by Feigenbaum [6, 7]. Behavior of the function representing the so-
lution of the basic equation of the theory, the Feigenbaum–Cvitanović equation, in complex domain
was discussed e. g. in works of Nauenberg [10] and Wells and Overill [11].

Beside the Feigenbaum point one can find on the complex parameter plane many other points,
at which the Mandelbrot cactus displays properties of self-similarity. In particular, we can select
a path on the complex plane λ through across the sequence of leaves corresponding to periods
3, 9, 27, . . . , 3k, . . . , and arrive at the period-tripling accumulation point

λtriplc = 0.0236411685377+ 0.7836606508052i. (1.2)

This point was first discovered by Golberg, Sinai, and Khanin [12], and then, independently, by Cvi-
tanović and Myrheim [5, 13]. For shortness, we will refer to it as the GSK critical point. As in the case
of period-doubling, dynamics at the GSK point allows the RG analysis. In particular, it leads to a con-
clusion on the property of similarity for the associated leaves of the the Mandelbrot cactus. According
to Refs. [12, 13, 5], the scaling factor appears to be complex and equal to δ1 ∼= 4.6002− 8.9812i1.

It seems very interesting to discuss a possibility to observe phenomena of the complex analytic
dynamics associated with the Mandelbrot set in physical systems. Recently this question was posed
by Beck [14]. The author considered motion of a charged particle in a double-well potential in a time-
depended magnetic field and showed that under certain assumptions, the dynamics can be described
by the complex quadratic map or by other complex analytic maps.

It should be emphasized that when estimating a possibility of physical realization for any special
type of dynamics we should account robustness of a phenomenon under study. In particular, one has

1Beside (1.2) a complex conjugate period-tripling accumulation point exists at λ = λ∗c , and scaling constant for it
equals δ∗1 .
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to ask either various phenomena associated with dynamics of the complex analytic iterative maps will
survive or not in a slightly modified map, which could violate the Cauchy–Riemann conditions.

In the original work [12] the authors claimed that the infinite period-tripling bifurcation cascade
could occur typically in two-parameter families of real two-dimensional maps (see also [15]). In con-
trast, from studies of Peinke et al. [16], Klein [17], and from qualitative analysis of Cvitanović and
Myrheim [5] it follows that in presence of a non-analytic perturbation of the map the arrangement of
the parameter space is changed drastically, and, apparently, it leaves no opportunity for the universal-
ity intrinsic to the period-tripling and to the GSK point to survive. Recently Peckham and Montaldi
have presented extensive bifurcation analysis of the complex quadratic map with a non-analytic term
[18, 19]. However, the question what happens with the bifurcation cascades of period-tripling in pres-
ence of this term remains not clear. Apparently, this matter deserves special consideration in terms
of the RG analysis. This is the main goal of the present article. Our final conclusion is that the crit-
ical behavior associated with the infinite period-tripling bifurcation cascade in real two-dimensional
maps will occur typically only in families having at least four real parameters. In other words, the
codimension of the phenomenon is four. On this reason its physical observation seems problematic.

In Section 2 we reproduce the contents of the RG analysis developed in Refs. [12, 13, 5] and
extend it to study the RG equation fixed point in respect to a class of perturbations, which can
violate the Cauchy–Riemann conditions. We find that one of the eigenvalues for the linearized RG
transformation associated with a non-analytic perturbation is relevant. In Section 3 we formulate the
model map appropriate for a study of dynamics in the extended parameter space. Then we explain
a necessity of nonlinear variable change to define local coordinates for observation of scaling in the
parameter space. (The procedure of numerical calculations used to find the desired variable change is
described in the Appendix.) In Section 4 we discuss some details of the parameter space arrangement
near the GSK point and present graphical illustrations of the intrinsic scaling properties associated
with both relevant universal constants.

2. Renormalization group analysis

For the original model Eq. (1.1) determines the evolution operator over one iteration step. Then, for
three iterations we have, obviously, z′ = f(f(f(z))) = λ− (λ− (λ− z2)2)2. Let us introduce the new
variable, which differs from z by a constant factor α0. We select the value of this factor to normalize
the new map corresponding to the three-step evolution operator to unity at the origin. Then the result
may be written as z′ = f1(z), where f1(z) = α0f(f(f(z/α0))), and α0 = 1/f(f(f(0))).

Now we can take f1(z) as the initial function and apply the same procedure. The result will
be the renormalized evolution operator for nine steps: z′ = f2(z), where f2(z) = α1f1(f1(f1(z/α1))),
α1 = 1/f1(f1(f1(0))). Multiple repetition of the transformation yields the recurrent functional equa-
tion in the following form:

fk+1(z) = αkfk(fk(fk
(
z/αk

)
)), αk = 1/fk(fk(fk(0))). (2.1)

Here fk(z) represents the evolution operator for 3k iterations of the original map in terms of the renor-
malized dynamical variable. Note that the constants of rescaling αk, which appear at the subsequent
steps of the procedure, are complex.

According to results of the previous works [12, 13, 5], at the period-tripling accumulation point
the sequence of functions fk(z) converges to certain limit g(z) = lim

k→∞
fk(z), where g(z) is a universal

function being the fixed point of the RG equation

g(z) = αg(g(g(z/α))), α = lim
k→∞

αk = 1/g(g(g(0))). (2.2)

It is just a generalization of the Feigenbaum–Cvitanović equation [6, 7] for the case of period-tripling.
Obviously, the function g(z) has to be even, with quadratic critical point at z = 0, because these are
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Table1. The coefficients of polynomial expansion for the fixed-point function g(z)

1 1.0 + 0.0i

z2 0.054665304− 0.749020944i

z4 −0.024397241− 0.052466461i

z6 −0.002529112− 0.001197430i

z8 −0.000088081+ 0.000137556i

z10 0.000000729+ 0.000018289i

z12 0.000000541+ 0.000001194i

z14 0.000000074+ 0.000000048i

the properties of all the functions in the sequence fk(z). For numerical solution of the equation (2.2)
one can approximate the function g(z) by a finite Taylor series containing only even powers of z:

g(z) = 1 +
m∑
r=1

grz
2r. (2.3)

Next, we can realize the RG transformation as the computer program operating with the coefficients
of the polynomial expansions. Conditions of equality for terms of identical powers in the left- and
right-hand parts of the equation (2.2) determine a certain set of nonlinear algebraic equations, which
can be solved numerically by means of multi-dimensional Newton method. In Table 1 we present the
coefficients of the polynomial expansion for the universal function, which are in good agreement with
the earlier data of Refs. [12, 13]. As follows from the computations, the scaling constant is

α = −2.09691989+ 2.35827964i. (2.4)

To simplify further analysis it is useful to redefine the RG transformation accounting that the
constant α is known now. Namely, we prefer to use now the same rescaling factor at all subsequent
steps of the renormalization, assuming that it is independent on the index k and equal α. We just
substitute αk = α into Eq. (2.1) and obtain

fk+1(z) = αfk(fk(fk(z/α))). (2.5)

Obviously, the new version of the RG transformation possesses the same fixed point g(z) as Eq. (2.1)
has, although the normalization g(0) = 1 should be regarded now as an arbitrarily accepted additional
condition.

Let us consider the map z′ = g(z), where g(z) is the function associated with the fixed-point of
the RG transformation. Using the data of Table 1 one can check that this map has an unstable fixed
point z = z∗ ∼= 0.691473− 0.302692i, and derivative at this point is

µc = g′(z∗) = −0.47653180− 1.05480868i. (2.6)

Then, it follows from Eq. (2.2) that starting at z∗/α we obtain an orbit of period 3. The Floquet
eigenvalue (or multiplier) for this cycle is the same complex number µc. By induction, it is easy to
see that there is an infinite countable set of period-3k cycles with the same value of the multiplier. As
the mapping z′ = g(z) represents the asymptotic form of the evolution operators for the original map,
one can conclude that the map (1.1), as any other map relating to the universality class, must have an
infinite set of the unstable orbits of period 3k at the GSK point. Asymptotic value of the multipliers
is the universal constant µc.

Now let us consider some smooth real two-dimensional map

x′ = ϕ(x, y), y′ = ψ(x, y), (2.7)
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which depends on several parameters. In terms of the complex variable this map can be expressed,
in general, as a function of two arguments z = x + iy and z∗ = x − iy: z′ = F (z, z∗), where
F (x+ iy, x− iy) = ϕ(x, y) + iψ(x, y). Next, let us assume that in the parameter space there is a
point, at which the map is complex analytic, i. e. the Cauchy–Riemann equations hold: ϕx = ψy,
ϕy = −ψx, and the dynamics in this point is intrinsic to the period-tripling accumulation point GSK.
It means that for a sufficiently large number of iterations 3k the evolution operator in appropriate
normalization is represented by the universal function g(z). If we slightly change the parameters and
depart from the GSK point, the behavior of the evolution operator sequence is distinct and near the
fixed point some perturbation of the RG equation solution appears. In general, the perturbed solution
does not satisfy the Cauchy–Riemann conditions, so the evolution operator should be written in the
following form:

Fk(z) = g(z) + εhk(z, z
∗). (2.8)

Here ε� 1, and hk is a smooth function of two arguments. Let us substitute the last expression into
the RG equation (2.5) and collect the terms of the first order in ε. It yields

hk+1(z, z
∗) = α[g′(g(g(z/α)))g′(g(z/α))hk(z/α, (z/α)

∗) +

+ g′(g(g(z/α)))hk(g(z/α), (g(z/α))
∗) + hk(g(g(z/α)), (g(g(z/α)))

∗)],
(2.9)

where g′ means the derivative of the function g. Obviously, this relation has a structure hk+1 = m̂hk,
where m̂ is a linear operator defined by the right-hand part of (2.9) and acting in a space of func-
tions h(z, z∗). The question of behavior of the solution for the linearized RG equation under iterations
is linked with the spectrum of eigenvalues of the operator m̂. Those eigenvalues are relevant, which
absolute value are larger than 1 because the corresponding components of the perturbation grow under
subsequent iterations of the RG transformation. So, we arrive at the following eigenproblem:

νh(z, z∗) = α[g′(g(g(z/α)))g′(g(z/α))h(z/α, (z/α)∗) +

+ g′(g(g(z/α)))h(g(z/α), (g(z/α))∗) + h(g(g(z/α)), (g(g(z/α)))∗)].
(2.10)

The numerical solution of the eigenproblem can be obtained by using of the polynomial representation
for the function g(z), which is already known, and with the help of Taylor expansion for the function
h(z, z∗) in powers of z and z∗. As we account a finite number of the terms in the expansions,
the eigenproblem becomes a finite-dimensional one, and reduces to a search for eigenvectors and
eigenvalues of a certain matrix. As the numerical calculations show, the senior eigenvalue equals

δ1 = 4.60022558− 8.98122473i, (2.11)

and the associated eigenfunction does not depend on the second argument z∗. In Table 2 we present
the coefficients of the polynomial expansion for the eigenfunction h(1)(z). We can see that the function
is even. The universal constant (2.11) was found in Ref. [12], where the RG equation solutions in the
form fk(z) = g(z) + εhk(z) were considered. It is clear that the perturbation of such type retains the
map in the class of mappings satisfying the Cauchy–Riemann equations.

It appears, however, that one more relevant eigenvalue exists, which is larger than unity in
modulus, and is responsible for non-analytic perturbation of the fixed point of the RG equation. The
associated eigenfunction contains the powers of both arguments z and z∗ in the polynomial expansion.
Let us turn first to an analytical derivation indicating presence of such a solution.

We have mentioned that the fixed-point function g(z) is even. Hence, it follows from (2.10) that

νh(−z,−z∗) = α[g′(g(g(z/α)))g′(g(z/α))h(−z/α,−(z/α)∗) +

+ g′(g(g(z/α)))h(−g(z/α),−(g(z/α))∗) + h(−g(g(z/α)),−(g(g(z/α)))∗)].
(2.12)
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Table2. The coefficients of polynomial expansion for the senior eigenfunction h(1)(z)

1 1.0 + 0.0i

z2 0.181223377− 0.141361034i

z4 0.002303322− 0.015962515i

z6 −0.001131785− 0.000491487i

z8 −0.000151737+ 0.000053131i

z10 −0.000010514+ 0.000009686i

z12 −0.000000310+ 0.000001085i

z14 0.000000033+ 0.000000100i

Let us represent the eigenfunction as a sum of the symmetric and antisymmetric components:

h(z, z∗) = hs(z, z∗) + ha(z, z∗), (2.13)

where

hs(z, z∗) =
h(z, z∗) + h(−z,−z∗)

2
, (2.14)

ha(z, z∗) =
h(z, z∗)− h(−z,−z∗)

2
. (2.15)

Then, subtracting (2.12) from (2.10) we have

νha(z, z∗) = αg′(g(g(z/α)))g′(g(z/α))ha(z/α, (z/α)∗). (2.16)

Now let us express the function ha(z, z∗) as

ha(z, z∗) =
g′(z)
z Φ(z, z∗), (2.17)

where Φ(z, z∗) is a smooth function without singularity at z → 0. As we have g′(z) ∝ z, the ratio
g′(z)/z does not possess a singularity at z = 0, and our representation is reasonable. Using the relation

g′(g(g(z/α)))g′(g(z/α))g′(z/α) = 1, (2.18)

which follows from (2.2), we obtain a simple equation for the function Φ(z, z∗):

νΦ(z, z∗) = α2Φ((z/α), (z/α)∗). (2.19)

Obviously, any product zM (z∗)N where integers M � 0, N > 0 and the sum M + N is odd, yields
an eigenfunction, and the associated eigenvalue is α2−M (α∗)−N . Observe that modulus of one these
numbers is larger than one. Indeed, setting M = 0 and N = 1, i. e. Φ = z∗, we obtain

ha(z, z∗) =
g′(z)
z z∗, (2.20)

and

ν = α2

α∗
= δ2 = 2.58728651+ 1.80679396i. (2.21)
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Table3. The coefficients of polynomial expansion for the eigenfunction h(2)(z, z∗) associated with the

eigenvalue δ2 = 2.58728651+ 1.80679396i

1 z∗ (z∗)2 (z∗)4 (z∗)6 (z∗)8

1 1.0 + 0.0i −3.029846 0.398114 −0.022670 −0.002329 −0.000073
+6.351031i +0.008514i −0.073276i −0.003512i −0.0002278i

z2 1.094504 0.068249 0.086111 −0.001995 −0.000053 0.0000004
−1.043125i +1.082134i +0.039504i +0.001278i +0.000130i +0.000006i

z4 −0.048082 0.053978 0.001900 −0.000124 0.0000003
−0.141290i +0.057211i −0.001493i +0.000212i +0.000009i

z6 −0.011263 0.004950 −0.000450 −0.000005
−0.005046i −0.003601i −0.000460i +0.000022i

z8 −0.000616 0.000280 −0.000058 0.0000002
+0.000710i −0.000811i −0.000028i +0.000002i

z10 −0.000002 −0.000004 −0.000004
+0.000109i −0.000074i +0.0000002i

Table4. Some eigenfunctions of the eigenproblem (2.10) associated with the infinitesimal

variable changes

Variable change, Eigenfunction Eigenvalue ν
∆� 1 h(z, z∗)
Shift:

g′(z)− 1 ν = α = −2.0969+ 2.3583i
z → z + ∆

Scale change
zg′(z)− g(z) ν = 1

z → z(1 + ∆)

Non-analytic change
z∗g′(z)− (g(z))∗

ν = α/α∗ = −0.1169− 0.9931i
z → z + z∗ ·∆ |ν| = 1

So, we come to the conclusion that the relevant eigenvector depending on z∗ does exist. From
numerical solution of the linearized RG equation based on the expansion of the function h(z, z∗) in
powers of z and z∗

h(2)(z, z∗) =
n∑
i,j=0

hijz
iz∗j (2.22)

we have obtain the eigenvalue

δ2 = 2.58728651+ 1.80679396i (2.23)

and the coefficients presented in Table 3. The coefficients absent in the table are zero. As one can see,
the antisymmetric part of the function h(2)(z, z∗) is represented by the second column of the table. It
may be checked that this component coincide up to a constant factor with the analytical result (2.17),
and the eigenvalue consides with (2.20).

All eigenvalues distinct from δ1 and δ2 are not relevant. Some of them are associated with in-
finitesimal variable changes (cf. [7]). Such eigenfunctions can be expressed explicitly via the fixed point
function g(z), see Table 4. As the numerical calculations show, the modules of all other eigenvalues
are less than one.

As it follows from our analysis, the condition of realization of the universal behavior characteristic
for the GSK point is a possibility to vanish coefficients of two relevant eigenvectors associated with
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δ1 and δ2 by tuning the control parameters of the map. It yields two complex, or four real, equations
on the parameters. Generically, the solution will exist if the number of variables is not less than the
number of equations. So, we conclude that the universal behavior GSK may occur as generically in a
space of four real parameters. In other words, this is the dynamical behavior of codimension four.

It is worth noting that in general the Cauchy–Riemann equations are not necessary for existence
of the GSK point. For example, let us turn to the map studied by Gunaratne [15]

x′ = a + x2 − y2,
y′ = b+ (2 + ε)xy.

(2.24)

In this particular case the non-analytic term does not contribute into the eigenvector h2. Indeed,
by means of the variable changes z = x + yi, λ = a + ib and ε = ε/4 this map can be reduced to
z′ = λ+z2+ε(z2−(z∗)2). Here the non-analytic term has form (z∗)2. Because the linear component z∗

is absent, this non-analytic perturbation cannot contain the second eigenvector. It contributes into
the first eigenvector, but this perturbation may be compensated by an appropriate shift of λ = a+ ib.
Thus, the GSK point does exist, and it agrees with the conclusion of Ref. [15]. According to our
computations, for ε = 0.2 the critical point is located at a ∼= −0.035475, b ∼= 0.747736.

3. Model map and local scaling coordinates near the GSK point

Let us construct a model map appropriate for a study of dynamics in a neighbourhood of the GSK
point in the extended parameter space.

If we take the complex quadratic map (1.1) then a variation of parameter λ with departure from
the GSK point give rise, obviously, only to a perturbation that does not violate the analyticity; the
growing contribution in the solution of the linearized RG equation is given only by the eigenfunc-
tion h(1)(z). As we wish to turn on a perturbation of type h(2)(z, z∗), it is necessary to add an
appropriate non-analytic term in the map. Accounting that this eigenfunction h(2)(z, z∗) behaves for
small |z| as h(2) ∝ z∗, it is natural to add the term proportional to z∗. Thus, we come to the model
map

z′ = f(z) = λ− z2 + εz∗. (3.1)

Up to a trivial variable change (z → −z) this is the same map that the authors of Refs. [18, 19] choose
for their extensive bifurcation analysis. The extended parameter space is the two-dimensional complex
space C 2 : (λ, ε). Note that the map (3.1) is equivalent to a four-parameter two-dimensional real map

xn+1 = a− x2n + y2n + uxn + vyn, yn+1 = b− 2xnyn + vxn − uyn, (3.2)

where we set z = x+ iy, λ = a+ ib, ε = u+ iv.
As we have two relevant eigenfunctions h1(z) and h2(z, z

∗), the sequence of the evolution operators
generated by repetitive application of the RG transformation behave as

fk(z, z
∗) = g(z) +C1(λ, ε)δ

k
1h
(1)(z) +C2(λ, ε)δ

k
2h
(2)(z, z∗); (3.3)

this is true in linear approximation with respect to the deviation from the fixed point g(z). Here C1
and C2 are some complex coefficients, which vanish at the GSK point (λ = λc, ε = 0).

It would be convenient to use the coefficients C1 and C2 as local coordinates in parameter space.
In these coordinates the scaling properties of the parameter space are very simple and evident. Indeed,
if we change C1 to C1/δ1 and C2 to C2/δ2, then, according to (3.3), the evolution operator fk+1 at
the new point takes the same form as the operator fk at the old point. It means that the similar
dynamical regimes, but with tripled characteristic time scale, will occur at the new point.
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Unfortunately, we do not know the form of explicit expressions for C1(λ, ε) and C2(λ, ε). Hence,
the coordinate system in the parameter space suitable for demonstration of scaling (the scaling coor-
dinates) must be found numerically with sufficient precision.

Equation C1(λ, ε) = 0, or, in alternative notation, C1(a, b; u, v) = 0 defines some manifold M in
the parameter space.

Let us rewrite the equation of the manifold M in a form

a = ac + F (u, v), b = bc +G(u, v), (3.4)

where ac and bc correspond to the GSK point. The functions F (u, v) and G(u, v) may be represented
as Taylor expansions in powers of u and v. It occurs that the terms of the third and higher order can be
neglected on the following reason. As we will require, the renormalization of the complex coordinate
ε = u+ iv by factor δ2 has to ensure realization of similar dynamical regime. Let us assume that we
miss some term of power m in the expansion of F or G. When we perform scale change ε → ε/δ2,
this term will have an order δ−mk2 , and the error in the amplitude of the senior eigenvector will behave
as δk1/δ

mk
2 . Accounting our concrete relation of the eigenvalues intrinsic to the GSK point we observe

that it is dangerous only for m � 2, otherwise the error asymptotically vanishes as k → ∞. Indeed,
in accordance with (2.11) and (2.21) we have |δ2| < |δ1| and |δ2|2 < |δ1|, but |δ2|3 > |δ1|. So, only
the terms of the first and second order in the Taylor expansion must be evaluated accurately. So, we
rewrite the original map as follows:

x′ = a− x2 + y2 + ux+ vy+ Au+Bv + Pu2 +Quv +Rv2,

y′ = b− 2xy + vx− uy +Cu +Dv + Su2 + Tuv +Hv2,
(3.5)

where the capital letters designate the coefficients, which can be computed by means of the procedure
described in Appendix:

A = −0.232750391, B = 0.02699484, C = −B, D = A,

P = −0.2173, Q = −0.070, R = −0.3184,
S = 0.1533, T = 0.1010, H =

(3.6)

The coordinate system (a, b; u, v) is appropriate for demonstration of scaling because a shift of u and v
will contribute only into the second eigenvector, while a shift of a and b, as we know, contributes only
into the first eigenvector2.

4. Scaling properties of the extended parameter space in a neighbor-
hood of the GSK point

The complete bifurcation analysis in the four-dimensional parameter space (a, b, u, v) would be com-
plicated and tedious (see, nevertheless, Refs. [18, 19]). Here we only want to present computer il-
lustrations for scaling properties following from the RG results of Section 2. For this aim we will
consider certain two-dimensional cross-sections of the parameter space and demonstrate self-similarity
of structures observed in these cross-sections.

For graphical presentation we will use the technique of “Lyapunov space”, or Lyapunov charts
(see [21, 22, 23] for previous applications of this method). As we have chosen the parameter space
cross-section to be studied, we compute the senior Lyapunov exponent for the model map at each
pixel of the two-dimensional plot, and mark this pixel by a certain gray tone. We code the negative
values of Lyapunov exponent from −∞ to 0 by tones from dark to light gray (it corresponds to the
periodic regimes). White color represents zero Lyapunov exponent (e. g. quasiperiodicity or states

2See other examples of nonlinear parameter change for observation of the multi-parameter scaling in Refs. [24, 25, 26].
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Fig. 2. Cross-section of the parameter space for the map (3.1) by a plane u = 0, v = 0. Gray tones from dark to
light code values of the Lyapunov exponent from large negative to zero. White color corresponds to zero, and
black corresponds to positive Lyapunov exponent. Divergence is shown by uniform coloring with one special
gray tone. The GSK point is located exactly at the center of the diagrams. Fig. (b) shows a fragment of Fig. (a)
inside the frame after magnification and rotation in accordance with multiplication by δ1 ∼= 4.6002− 8.9812i.
The coding rule on the right plot is redefined to account the tripling of the characteristic time scales

at the onset of chaos), and black — positive Lyapunov exponent (chaos). Such a convention for the
palette ensures a clear vision of the border between regular and chaotic dynamics. In some domains
of the parameter space the model map manifests divergence; these areas are colored uniformly by one
special gray tone.

In our computations the trajectories started each time from the point z = 0, and the calculations
for evaluation of the Lyapunov exponent began after some sufficiently large number of iterations to
exclude the transients.

Let us turn first to a properties of scaling following from results of Refs. [12, 13, 5] and charac-
terized by the constant (2.11). In Fig. 2 we show a cross-section of the parameter space by surface
u = 0, v = 0, at which the equation (3.5) turns to the complex analytic map (1.1).

The picture is just a fragment of the Mandelbrot set represented in technique of the Lyapunov
chart. The GSK point is located exactly at the center of the diagram. Let us select a small box
containing the critical point, enlarge and rotate it in accordance with multiplication by the constant
δ1 ∼= 4.6002 − 8.9812i. The resulting diagram is shown at the right part of Fig. 2. In a course of
this procedure the legend for the Lyapunov exponent is redefined: as the characteristic time scale of
dynamical regimes triplicates, we decrease by 3 times all the values separating the distinct intervals for
coding by definite gray tones. Observe excellent visual similarity of both pictures confirming presence
of scaling.

Next, let us take another cross-section of the parameter space of the map (3.5), namely, by the
surface a = ac, b = bc. It means that in the parameter space of the original map (3.1) we are on the
manifold M : C1(λ, ε) = 0. The Lyapunov chart is shown in Fig. 3. Again we have placed the GSK
point precisely in the middle of the plot. Observe that visually the picture has nothing common with
the familiar Mandelbrot set. However, the self-similarity does hold, although it is linked now with the
new scaling constant (2.21). To demonstrate it, let us take a fragment marked by frame, and produce
magnification and rotation corresponding to multiplication by δ2 ∼= 2.5872+ 1.8067i. By redefinition
of the gray-scale coding rule for the Lyapunov exponent, as on Fig. 2, we obtain the chart presented
on the right plot of Fig. 3. It looks remarkably similar to the left diagram, which gives evidence of
the expected scaling.

Fig. 4 illustrates how do the Lyapunov charts in the cross-sections λ = const evolve as λ tends
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u

�

u

�

a b

Fig. 3. Cross-section of the parameter space for the map (3.1) by manifold M , on which the perturbation of
the RG fixed point associated with senior eigenvalue is excluded. Legend for gray scale coding of the Lyapunov
exponent is the same as in Fig. 2. The GSK point is placed exactly at the center of the diagrams. Fig. (b)
shows a fragment of Fig. (a) inside the frame after magnification and rotation in accordance with multiplication
by δ2

to the value λc associated with the GSK point. The plots are obtained for the cross-sections λ = λk,
where λk correspond to the superstable cycles of period 3k and are located at the middle of the
respective leaves of the Mandelbrot cactus: λ0 = 0.0+0.0i, λ1 = 0.122561+0.744862i, λ2 = 0.031553+
0.790783i, λ3 = 0.023369+ 0.7846797i. As we can see, the figure is subsequently enriched by smaller
and smaller “bubbles” of decreasing size (shown by arrows). In these domains periodic regimes take
place, and the period in each new arising area is tripled in comparison with the previous one. At λ = λc
the formation accepts a complete form, which contains an infinite sequence of the bubbles obeying the
property of self-similarity. This is the parameter space arrangement on the manifold M . A schema
explaining some details of the structure is shown in Fig. 5. The largest area in the middle corresponds
to a stable period-1 state. Here the map possesses the fixed point with two (complex conjugate)
multipliers, which modulus are less than unity. From the bottom this domain is bounded by a curve,
at which the Neimark bifurcation occurs. Here two complex multipliers cross the unit circle. Distinct
points of the border differ by the argument of the multipliers at the moment of the bifurcation. For
irrational or rational arguments (measured in 2π units) the attractor, which appears as a result of
the bifurcation, is, respectively, a torus (in the domain of quasiperiodicity), or a resonance cycle (the
Arnold tongues, which are not shown). At the upper border of the stability domain period-doubling
bifurcation takes place. It may be followed either by the secondary period doubling (top left part of
the border for the period-2 domain), or by Neimark bifurcation (top right part of the border). Note
overlap of the period-1 and period-2 areas, which indicates presence of bistability (coexistence of two
attractors with distinct basins). In this region the borders of the stability domains are associated with
the hard bifurcations (jumps). At the left bottom part of this structure another similarly arranged
smaller formation is attached, but there period-3 regime occurs in the middle part of the stability
domain. According to results of the RG analysis and scaling arguments, the sequence of the smaller
domains, each of which is attached to its precursor, must be infinite and become asymptotically self-
similar, accepting a universal form. (In fact, already on the very crude resolution scale of Fig. 5 the
domains of periods one and three look remarkably similar.)
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Fig. 4. Lyapunov charts for the map (3.5) on the plane (u, v) obtained at fixed values of λ corresponding at
u = ν = 0 to superstable cycles of period 1 (a), 3 (b), 9 (c), 27 (d). Observe that in the cross-sections closer to
the GSK point the figure is subsequently enriched by smaller and smaller bubbles (shown by arrows), each new
corresponds to the tripled time period
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Fig. 5. A schema of the parameter space cross-section by the manifold M , on which the contribution of the
senior eigenvector into a perturbation of the RG fixed point is excluded. Light gray areas correspond to periodic
regimes of periods marked by the Roman figures. Dark gray designates the area of quasi-periodicity and Arnold
tongues. Bifurcation lines are marked as pd (period-doubling), t (tangent), N (Neimark). On the Neimark
bifurcation curve some points of rational arguments of the multiplier are marked by circles, these are the sharp
ends of the respective Arnold tongues (the tongues themselves are not shown). Figures at that points designate

the rotation numbers mn . Stars mark points of existence of superstable cycles

Conclusion

In the present work we have studied scaling properties in the extended parameter space of non-analytic
maps for a universality class associated with the period-tripling bifurcation cascade. It is found that
the fixed point of the RG equation possesses two relevant eigenvectors, one of which is responsible
for the perturbation violating the Cauchy–Riemann conditions. As follows from the RG analysis,
the period-tripling universal scaling behavior can occur not only for complex analytic maps; however,
in general case, for its observation it is necessary to vanish two complex coefficients of the relevant
eigenvectors by means of appropriate selection of parameters. In generic case it requires to control at
least four real parameters. Apparently, experimental observation of such type of behavior in physical
systems will be very difficult. Nevertheless, we can not exclude that the period-tripling behaviour can
be found in some systems, which possess special symmetries. Perhaps, this is an interesting direction
of search for physical applications of the complex analytic dynamics.

This work is supported by RFBR (project No 00-02-17509) and, in part, by Research and Edu-
cational Center of Nonlinear Dynamics and Biophysics of Saratov State University via award of US
Civilian Research and Development Foundation (CRDF) No REC-006.
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Appendix

In Section 3 we have introduced a manifold M in the parameter space of the map (3.1), defined by a
condition of absence of the senior eigenvector in the perturbation of the RG fixed point: C1(λ, ε) = 0,
or C1(a, b; u, v) = 0. Let us write out the equations for this manifold as

a = ac + F (u, v), F (u, v) = ac + Au+ Bv + Pu2 +Quv +Rv2, (4.1)

b = bc +G(u, v), G(u, v) = bc +Cu +Dv + Su2 + Tuv +Hv2. (4.2)

Here, in accordance with the argumentation in the main text, only terms up to the second order in
the Taylor expansion are retained. The coefficients designated by the capital letters A,B, . . . , H have
to be computed numerically.

Let us suppose that we have found a cycle of period N for the map (3.1), and this cycle starts at
the point (x0, y0). In terms of real variables the evolution of small perturbation (x̃, ỹ) = (Re z̃, Im z̃)
over one period of the cycle is determined by Jacobi matrix

J =

(
a11 a12
a21 a22

)
=



∂xN
∂x0

∂xN
∂y0

∂yN
∂x0

∂yN
∂y0


 . (4.3)

While the map is complex analytic, the Cauchy–Riemann equations hold, namely, a11 = a22,
a12 = −a21. In presence of the term εz∗ these conditions are violated. It is worth considering the
trace

S =
∂xN
∂x0

+
∂yN
∂y0

(4.4)

and determinant

J =
(
∂xN
∂x0

)(∂yN
∂y0

)
−
(
∂xN
∂y0

)(∂yN
∂x0

)
(4.5)

of the matrix J. Note that they are invariant under variable changes. As it has been mentioned
(Section 2), exactly at the point GSK an infinite countable set of cycles of period N = 3, 9, 27, . . . , is
present. In asymptotics of large k all these cycles have the same universal value of the multipliers, and,
hence, are characterized also by the universal values of trace and determinant of the Jacobi matrix.

Let us assume that we have computed the first and the second derivatives of trace and determinant
in respect to the parameters u and v for periods 3k+1 and 3k at the point a = ac, b = bc, u = 0, v = 0.
Let us make a small shift of the complex parameter ε = u + vi from the GSK point, but stay on the
manifold M . Then, for the cycle 3k+1 the change of the values for trace and determinant should be
the same as for the cycle 3k at the shift δ2ε = (ξu− ηv)+ (ξv+ ηu)i. The requirement for traces and
determinants of both cycles to coincide at arbitrarily chosen u v

Sk+1(u, v) = Sk(ξu− ηv, ξv+ ηu),

Jk+1(u, v) = Jk(ξu− ηv, ξv+ ηu),
(4.6)
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yields

S(k+1)u u+ S(k+1)v v + S(k+1)uv uv + 1
2
S(k+1)uu u2 + 1

2
S(k+1)vv v2 =

= S(k)u (ξu− ηv) + S
(k)
(v)(ξv + ηu) + S(k)uv (ξu− ηv)(ξv+ ηu) +

+1
2
S(k)uu (ξu− ηv)2+ 1

2
S(k)vv (ξv + ηu)2,

J(k+1)u u+ J(k+1)v v + J(k+1)uv uv + 1
2
J(k+1)uu u2 + 1

2
J(k+1)vv v2 =

= J(k)u (ξu− ηv) + J(k)v (ξv + ηu) + J(k)uv (ξu− ηv)(ξv+ ηu) +

+1
2
J(k)uu (ξu− ηv)2+ 1

2
J(k)vv (ξv + ηu)2,

(4.7)

where the terms of the first and the second order are accounted.
Equalizing the terms proportional to u and v, we obtain in the first order the following four

equations:

Sk+1u = Skuξ + Skvη, Sk+1v = Skvξ − Skuη,
Jk+1u = Jkuξ + Jkv η, Jk+1v = Jkv ξ − Jkuη.

(4.8)

for four coefficients A, B, C, D, which influence the first derivatives of trace and determinant. In the
second order we equalize the terms proportional to u2, uv, v2:

1
2
Sk+1uu = 1

2
Skuuξ

2 + Skuvξη + 1
2
Skvvη

2,

Sk+1uv = − Skuuξη + Skuv(ξ
2 − η2) + Skvvξη,

1
2
Sk+1vv = 1

2
Skuuη

2 − Skuvξη + 1
2
Skvvξ

2,

1
2
Jk+1uu = 1

2
Jkuuξ

2 + Jkuvξη + 1
2
Jkvvη

2,

Jk+1uv = − Jkuuξη + Jkuv(ξ
2 − η2) + Jkvvξη,

1
2
Jk+1vv = 1

2
Jkuuη

2 − Jkuvξη + 1
2
Jkvvξ

2,

(4.9)

and it yields six equations for six unknowns P , Q, R, S, T , U , H .
To obtain the values of the derivatives, we iterate Eqs. (3.5) together with the relations following

from them by differentiation in respect to variables and parameters at the point GSK on the periodic
orbit under consideration:

x′x = − 2xxx + 2yyx + uxx + vyx,

y′x = − 2xxy − 2xyx + vxx − uyx,
x′u = − 2xxu + 2yyu + x+ uxu + vyu + A+ 2Pu +Qv,

y′u = − 2xuy − 2xyu + vxu − y − uyu + C + 2Su+ Tv,

x′v = − 2xxv + 2yyv + uxv + vyv + y +B +Qu+ 2Rv,

y′v = − 2xvy − 2xyv + vxv − uyv + x+D + Tu+ 2Hv,

(4.10)

x′uu = − 2xuxu − 2xxuu + 2yuyu + 2yuu + xu + uxuu + vyuu + 2P,

x′uv = − 2xuxv − 2xxuv + 2yuyv + 2yuv + xv + uxuv + yu + vyuv +Q,

x′vv = − 2xvxv − 2xxvv + 2yvyv + 2yvv + yv + uxvv + vyvv + 2R,

y′uu = − 2xuuy − 2xuyu − 2xuyu − 2xyuu + vxuu − yu − uyuu + 2S,

y′uv = − 2xuvy − 2xuyv − 2xvyu − 2xyuv + xu + vxuv − yv − uyuv + T,

y′vv = − 2xvvy − 2xvyv − 2xvyv − 2xyvv + xv + vxvv − uyvv + 2H,

(4.11)

REGULAR AND CHAOTIC DYNAMICS, V. 5, No 4, 2000 473



� O.B. ISAEVA, S.P.KUZNETSOV

x′xu = − 2xuxx − 2xxxu + 2yuyx + 2yxu + xx + uxxu + vyxu,

y′xu = − 2xxuy − 2xxyu − 2xuyx − 2xyxu + vxxu − yx − uyxu,
x′xv = − 2xvxx − 2xxxv + 2yvyx + 2yxv + uxxv + yx + vyxv,

y′xv = − 2xxvy − 2xxyv − 2xvyx − 2xyxv + xx + vxxv − uyxv,
x′yu = − 2xuxy − 2xxyu + 2yuyy + 2yyu + xy + uxyu + vyyu,

y′yu = − 2xyuy − 2xyyu − 2xuyy − 2xyyu + vxyu − yy − uyyu,
x′yv = − 2xvxy − 2xxyv + 2yvyy + 2yyv + uxyv + yy + vyyv ,

y′yv = − 2xyvy − 2xyyv − 2xvyy − 2xyyv + xy + vxyv − uyyv,

(4.12)

x′xuu = − 2xuuxx − 4xuxxu − 2xxxuu + 2yuuyx + 4yuyxu + 2yyxuu + 2xxu + uxxuu + vyxuu,

x′xuv = − 2xuvxx − 2xvxxu − 2xuxxv − 2xxxuv + 2yuvyx + 2yvyxu + 2yuyxv + 2yyxuv +

+ xxv + uxxuv + yux + vyxuv,

x′xvv = − 2xvvxx − 4xvxxv − 2xxxvv + 2yvvyx + 4yvyxv + 2yyxvv + 2yxv + uxxvv + vyxvv,

y′xuu = − 2xxuuy − 4xxuyu − 2xxyuu − 2xuuyx − 4xuyxu − 2xyxuu − 2yxu + vxxuu − uyxuu,
y′xuv = − 2xxuvy − 2xxvyu − 2xxuyv − 2xxyuv − 2xuvyx − 2xvyxu − 2xuyxv − 2xyxuv +

+ 2xxu + vxxuv − y + xv − uyxuv,
y′xvv = − 2xxvvy − 4xxvyv − 2xxyvv − 2xvvyx − 4xvyxv − 2xyxvv + xxv + xxv + vxxvv − uyxvv,
x′yuu = − 2xuuxy − 4xuxyu − 2xxyuu + 2yuuyy + 4yuyyu + 2yyyuu + 2xyu + uxyuu + vyyuu,

x′yuv = − 2xuvxy − 2xvxyu − 2xuxyv − 2xxyuv + 2yuvyy + 2yvyyu + 2yuyyv + 2yyyuv +

+ xyv + uxyuv + yuy + vyyuv,

x′yvv = − 2xvvxy − 4xvxyv − 2xxyvv + 2yvvyy + 4yvyyv + 2yyyvv + 2yyv + uxyvv + vyyvv,

y′yuu = − 2xyuuy − 4xyuyu − 2xyyuu − 2xuuyy − 4xuyyu − 2xyyuu − 2yyu + vxyuu − uyyuu,
y′yuv = − 2xyuvy − 2xyvyu − 2xyuyv − 2xyyuv − 2xuvyy − 2xvyyu − 2xuyyv − 2xyyuv +

+ 2xyu + vxyuv − y + yv − uyyuv ,
y′yvv = − 2xyvvy − 4xyvyv − 2xyyvv − 2xvvyy − 4xvyyv − 2xyyvv + xyv + xyv + vxyvv − uyyvv ,

(4.13)

Initial conditions for all iterated variables are formulated as follows:

x = x0, y = y0,

xu = xu0, yu = yu0, xv = xv0, yv = yv0,

xuu = xuu0, yuu = yuu0, xuv = xuv0, yuv = yuv0, xvv = xvv0, yvv = yvv0,

xx = 1, xy = 0, yx = 0, yy = 1,

xxu = xyu = xxv = xyv = yxu = yyu = yxv = yyv = 0,

xxuu = xxuv = xxvv = xyuu = xyuv = xyvv = 0,

yxuu = yxuv = yxvv = yyuu = yyuv = yyvv = 0.

(4.14)

Constants x0, y0, xu0, yu0, xv0, yv0, xuu0, yuu0, xuv0, yuv0, xvv0, yvv0 are determined in a process
of the calculations with Newton method to satisfy the condition that the values of the respective
variables after a period of the cycle have to be equal to their initial values.
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Trace and determinant of the Jacobi matrix and their derivatives are defined as

S = xx + yy,

Su = xxu + yyu, Sv = xxv + yyv,

Suu = xxuu + yyuu, Suv = xxuv + yyuv , Svv = xxvv + yyvv ,

J = xxyy − xyyx,
Ju = xxuyy + xxyyu − xyuyx − xyyxu, Jv = xxvyy + xxyyv − xyvyx − xyyxv,

Juu = xxuuyy + xxuyyu + xxuyyu + xxyyuu − xyuuyx − xyuyxu − xyuyxu − xyyxuu,
Juv = xxuvyy + xxuyyv + xxvyyu + xxyyuv − xyuvyx − xyuyxv − xyvyxu − xyyxuv,
Jvv = xxvvyy + xxvyyv + xxvyyv + xxyyvv − xyvvyx − xyvvyxv − xyyxvv,

(4.15)

The final result of the computation is given by the numerical data for the coefficients (3.6).
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