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Using the nonlinear dissipative kicked oscillator as an example, the correspondence between the
descriptions provided by model dynamical systems of different classes is discussed. A detailed
study of the approximate 1D map is undertaken: the period doubling is examined and the
possibility of non-Feigenbaum period doubling is shown. Illustrations in the form of bifurcation
diagrams and sets of iteration diagrams are given, the scaling properties are demonstrated,
and the tricritical points (the terminal points of the Feigenbaum critical curves) in parameter
space are found. The congruity with the properties of the corresponding 2D map, the Ikeda
map, is studied. A description in terms of tricritical dynamics is found to be adequate only in
particular areas of parameter space.

1. Introduction

The first step in studying complex oscillations and
chaos in a particular system is the selection of the
class of model to be used. Depending on the pur-
pose of the study, this can be a system of differ-
ential equations, a 2D map or a 1D (noninvertible)
map. The problem of correspondence between dif-
ferent models has been somewhat overshadowed by
the idea of Feigenbaum universality and it is com-
monly thought that realistic systems and compli-
cated mathematical models manifest most of the
same regularities as the simplest abstract models
like the logistic map. The picture of the transi-
tion to chaos via period doublings and the scaling
properties at the threshold of chaos will be simi-
lar for all models. Renormalization group theory
substantiates this fact, and it is also confirmed by
numerous investigations of specific examples. How-
ever, it should be emphasized that not all phenom-

ena are described by renormalization group theory
and lead to period doublings that can be carried
over from 1D maps to 2D maps and to continuous-
time systems (flows), or vice versa [Kuznetsov et al.,
1997a, 1997b; Kuznetsov, 1992]. These behavioral
peculiarities reveal themselves under two-parameter
analysis. For example, for 1D maps, the curve
which corresponds to transition to chaos can ter-
minate at tricritical points [Chang et al., 1981].
For 2D maps (and for flows), tricritical points of
this type are not observed [Kuznetsov et al., 1997a,
1997b; Kuznetsov, 1992]. The corresponding struc-
ture of parameter space appears to be realized only
approximately, at some level of refinement. Thus,
two-parameter analysis of the dynamics of a par-
ticular system requires careful control of the ability
of the dynamical model to describe the phenom-
ena of interest and a discussion of the correspon-
dence between the descriptions at different levels of
precision.
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A very convenient subject for research on this
problem is provided by kicked systems, because
they allow advanced analytical investigations. The
bouncing ball [Bergé et al., 1984; Moon, 1987;
Guckenheimer & Holmes, 1983], the kicked ro-
tator [Schuster, 1984], the damped mathematical
pendulum that rotates between electromagnetic
poles [Heagy, 1992], etc., all belong to this class
of systems. The present work is devoted to inves-
tigating the nonautonomous dissipative kicked os-
cillator. Using the method of slow amplitudes we
obtain a model 2D map. This map coincides with
one of the well-known models of nonlinear dynam-
ics, the Ikeda map. The one-dimensional approxi-
mation yields the “cosine map”. Our purpose is to
perform a comparison of the descriptions in terms
of these models.

In the present work the nonlinear oscillator is
an instrument rather than an object of research.
Nevertheless, let us say a few words about the mod-
eling of a kicked oscillator by 2D maps. Parlitz sug-
gested that the description of the complex dynamics
demonstrated by a periodically driven oscillator is
an advanced model in the form of a 2D “twist-and-
kick map” [Parlitz, 1993; Parlitz et al., 1991]. But
the main emphasis of their work was devoted to
other problems. They limited their consideration
to establishing the fact, that both oscillator and
its model exhibit the “crossroad area” and “spring
area” structures [Carcasses et al., 1991] in parame-
ter space. We think, that this is not sufficient when
comparing dynamical systems of different classes.
More detailed two-parameter investigations are
necessary.

2. From Flow to Two-Dimensional
Map

Let us consider a periodically kicked dissipative os-
cillator with cubic nonlinearity. The behavior of
such a system can be described by the following
differential equation:

ẍ+ γẋ+ ω2
0x+ βx3 =

∑
n

Cδ(t− nT ) (1)

where x is the coordinate of the oscillator, γ the
parameter of dissipation, and ω0 the oscillator fre-
quency. T is the interval between the kicks, and C
is their amplitude.

At first, we shall obtain a 2D map for the sys-
tem at issue. The right-hand part of Eq. (1) van-

ishes between the kicks. Hence, we can find an ap-
proximate analytical solution by using the method
of slow amplitudes. Let us express x in the following
form:

x =
a

2
eiω0t +

a∗

2
e−iω0t , (2)

where a = a(t) is the slowly varying amplitude of
the oscillator. The asterisk denotes complex conju-
gate. Substituting this expression into Eq. (1) and
accounting for the additional condition

ȧeiω0t + ȧ∗e−iω0t = 0 , (3)

after averaging over time we obtain the following
truncated equation:

ȧ = −γ
2
a+

3

8

iβ

ω0
|a|2a . (4)

Let us introduce the real amplitude R and phase ϕ
by using the substitution a = Reiϕ. By separating
real and imaginary parts in Eq. (4) we arrive at the
following expressions:

Ṙ = −γ
2
R , (5)

ϕ̇ =
3

8

β

ω0
R2 . (6)

Solving these equations we find the amplitude and
phase between the n-th and (n+1)-th kicks as func-
tions of time as

R(t) = Rne
−γt/2 , (7)

ϕ(t) =
3

8

β

ω0
R2
n

1− e−γt
γ

+ ϕn . (8)

Here Rn and ϕn are the initial amplitude and phase,
immediately after the n-th kick.

From Eqs. (2) and (3) we obtain the following
relations:

x(t) = R(t) cos(ω0t+ ϕ(t)) , (9)

v(t) = −ω0R(t) sin(ω0t+ ϕ(t)) . (10)

Substituting (7) and (8) into (9) and (10) we find
the oscillator coordinate and velocity as functions
of time. The time interval between the n-th and
(n + 1)-th kicks is T . Therefore the coordinate
and velocity before the (n+ 1)-th kick are given by
x(T ) and v(T ), respectively. Immediately after the
(n+ 1)-th kick the coordinate is not changed, while
the velocity is changed by the addend C, because
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the force pulse is the delta function. Therefore, for
the coordinate and velocity immediately after the
(n+ 1)-th kick we obtain the following expressions:

xn+1 = Rne
−γT/2 cos

(
ω0T

+
3

8

β

ω0
|Rn|2

1− e−γT
γ

+ ϕn

)
, (11)

vn+1 = −ω0Rne
−γT/2 sin

(
ω0T

+
3

8

β

ω0
|Rn|2

1− e−γT
γ

+ ϕn

)
+ C . (12)

It is convenient to rewrite these relations in complex
form. We introduce the complex variable as:

z =

(
ix+

v

ω0

)√
3

8

β

ω0

1− e−γT
γ

. (13)

Then, taking (9) and (10) into account, from (11)
and (12) we obtain the map for the variable z:

zn+1 = A+Bzn exp(i(|zn|2 + ψ)) , (14)

where the new parameters A, B, and ψ are deter-
mined by the initial system parameters as follows:

A =
C

ω0

√
3

8

β

ω0

1− e−γT
γ

, B = e−γT/2 , ψ = ω0T .

(15)

Note, that the same map was suggested by Ikeda
for an optical ring cavity with a nonlinear medium
[Ikeda et al., 1980]. Thus, the map (14) allows vari-
ous physical interpretations. This is not so surpris-
ing, because we used very general assumptions to
deduce it.

The Ikeda map (14) is one of the standard mod-
els of nonlinear dynamics. For example, in a recent
survey [Mosekilde, 1996] one can find detailed bifur-
cation analysis for it. As a complement to these re-
sults, we present here the topography of dynamical
regimes for the Ikeda map for the parameter value
ψ = 0 [Fig. 1(a)]. In this and the analogous charts
to follow, the regions of periodic behavior with dif-
ferent periods are shown with different colors, for in-
stance 1 is green, 2 is yellow, 3 is magenta, 4 is blue,
while the gray color represents chaos. Note, that
in some regions multistability occurs. The charts
of dynamical regimes have to be regarded not as
one “sheet”, but as a set of “sheets”, which over-
lap in the region where the system has more than
one attractor. At the boundaries of the “sheets”
the system exhibits a jump from one “sheet” to
another. Straightforward plotting of the diagram
does not reveal all the “sheets”, but in any case
the charts obtained are useful for understanding the
dynamics. In the parameter plane one can find a
set of cusp points with lines of tangent bifurcations
emanating from them, as well as various regions
of cycles of doubled period. The region of chaos

(a) (b)

Fig. 1. Topography of the dynamical regimes in parameter space for the Ikeda map. (a) For the case ω = 0 (b) fragment of
the first figure.
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Fig. 2. Topography of the largest Lyapunov exponent for the Ikeda map.

contains structures typical for two-parameter sys-
tems which are called “crossroad areas” [Carcasses
et al., 1991]. This is a typical composition of lines
of tangent bifurcation and of period doubling. A
number of such structures are observed in Fig. 1(b).
They are based on the low-periodic cycles. Note,
that charts of the dynamical regimes for other

values of the phase parameter do not differ qual-
itatively from the above.

Together with charts of the dynamical regimes,
we plot charts of the largest Lyapunov exponent
for the Ikeda map (Fig. 2). In this diagram the
change of the largest Lyapunov exponent from mi-
nus infinity to zero corresponds to the change of

(a) (b)

Fig. 3. Comparison of the topographies of the dynamical regimes for the differential equation and the 2D map in the
parameter space (C, W ): (a) Topography for the oscillator for β = 1 and γ = 0.2, (b) topography for the Ikeda map for the
same parameter values, (c) topography for the oscillator for β = 1 and γ = 0.05, and (d) topography for the Ikeda map for
the same parameter values.
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(c) (d)

Fig. 3. (Continued )

color from dark gray to white, while the black color
corresponds to positive values.

Now let us discuss the question of correspon-
dence between the descriptions of the original sys-
tem by the differential equation (1) and by the 2D
map (14). With this aim we display charts of the
dynamical regimes for the oscillator and for the 2D
map in the parameter space of the oscillator. These
charts are shown in Fig. 3. Here W = 2π/T is
the kick frequency and, as before, C is the ampli-
tude. The charts of dynamical regimes for the orig-
inal differential system (1) are shown in the left col-
umn. These charts are obtained by the method of
Poincaré mapping. The charts of dynamical regimes
for the 2D map (14) are shown to the right. Note,
that the parameters of the 2D map are converted
by using relations (15) and that the frequency of
the oscillator is ω0 = 1.

In the diagrams one can find a set of cusp points
with lines of tangent bifurcations going out from
them. These points correspond to resonances in
the nonautonomous oscillator at its own frequency
and at its subharmonics. There is a complex pic-
ture of different dynamical regimes in the region of
each resonance.

One can see that the correspondence between
the charts of dynamical regimes for the value of
the dissipation parameter γ = 0.2 is unsatisfac-
tory. This means, that such a value of dissipation
is too big for the method of slow amplitudes to be
valid. For γ = 0.05, however, one can see a more ac-
ceptable correspondence, especially in the region of

resonance at far subharmonics, i.e. in the region of
small frequencies. With a smaller frequency of the
kicks, the oscillator performs more oscillations be-
tween the kicks, and the method of slow amplitudes
is more effective.

3. One-Dimensional Map

It is necessary to have a strong compression of the
cloud of points in phase space (i.e. the system must
be strongly dissipative) in order for the 1D map to
approximate the 2D map adequately. At first sight
this contradicts the condition of applicability of the
method of slow amplitudes that we have used in
the previous section. In accordance with Eq. (15),
however, parameter B is decreased when we move to
the region of the resonance at subharmonics (i.e. to
the region where the method of slow amplitudes is
working). In addition, as we shall show in Sec. 4,
there are other reasons for the 1D map to work well
in this case.

Let us plot the attractor for the 2D map at
different points of parameter space (Fig. 4). In-
spection of the figure shows that the attractor has
a two-dimensional structure when parameter A is
small and parameter B is sufficiently large, while it
attains a one-dimensional structure as parameter A
is increased and parameter B decreased. The same
general tendency is observed for other values of the
parameters A and B. Thus, the 2D map can be
reduced to a 1D map when the condition B � A is
satisfied.
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(a) (b)

(c)

Fig. 4. Attractors for the Ikeda map in phase space for the cases: (a) A = 3.240, B = 0.445, (b) A = 4.70, B = 0.126, and
(c) A = 5.240, B = 0.056.

Let us construct the corresponding 1D map.
Following [Carr & Eilbech, 1984] let us suppose that
B is small. Then we can present the variable z in
the form z = A+ z̃ where z̃ is small. From Eq. (14)
we have for the variable z̃:

z̃n+1 = AB exp(i(A2 +A(z̃n + z̃∗n) + ψ)) . (16)

Let x = A2 + A(z̃ + z̃∗) + ψ. Then for the variable
x we obtain the following 1D map:

xn+1 = λ cos(xn) + ϕ , (17)

where the new parameters λ and ϕ are determined
in terms of the 2D map parameters as follows:

λ = 2A2B ϕ = A2 + ψ . (18)

This passage to a 1D map implies a reduction of the
number of relevant parameters from 3 to 2.

The 1D map (17) is represented by a very sim-
ple expression. It should be noted, however, that
this map is an interesting object by itself. For ex-
ample, it can be used to describe an acousto-optical
system with delay [Vallee et al., 1984].

Let us discuss now the complex dynamics of the
1D map. The topography of dynamical regimes for
the 1D map is presented in Fig. 5(a), and the topog-
raphy of the largest Lyapunov exponent is presented
in Fig. 5(d). In these charts one can see objects of
the same type as for the Ikeda map. There are
lines of tangent bifurcations, regions of the period
doubled cycles, fragments containing the “crossroad
area”, etc.

The 1D map (17) demonstrates the well-known
Feigenbaum scenario [Bergé et al., 1988; Moon,
1987; Guckenheimer & Holmes, 1983]. In Fig. 6 the
bifurcation tree is presented, values of x are plotted
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(a) (d)

(b) (e)

(c) (f)

Fig. 5. Comparison of the topography of the dynamical regimes and the topography of the largest Lyapunov exponent for
2D and 1D maps in the parameter space (λ, ϕ): (a, d) Topography for 1D map, (b, e) topography for 2D map for small values
of parameter A, and (c, f) for sufficiently large values of A.
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(a)

(b) (c)

(d) (e)

Fig. 6. (a) Bifurcation diagram for the cosine map (17) in the case ϕ = 0. (b–e) Iteration diagrams for the supperstable
cycles of period 2–16; parameter values λ = 1.57079633, λ = 1.88740798, λ = 1.95565631 and λ = 1.99763129.

versus λ along the line ϕ = 0, and the set of itera-
tion diagrams is given for the superstable cycles in
this case. The superstable cycles contain the point
of the extremum. The corresponding sequence of λ
converges to the limit value according to the geo-
metrical law with the universal Feigenbaum factor
δ = 4.669 . . .

The Feigenbaum scaling properties for the bi-
furcation tree and for the largest Lyapunov expo-
nent are illustrated in Fig. 7.

However, the 1D map (17) demonstrates non-
Feigenbaum period doubling cascades as well. One
of them is observed along the line λ = π−ϕ, which
corresponds to mapping the maximum onto the
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(a)

(b)

Fig. 7. Scaling on (a) the bifurcation diagram and on (b) the diagram of the largest Lyapunov exponent for ϕ = 0.

minimum. Figure 8 illustrates the bifurcation dia-
gram and the set of iteration diagrams for the super-
stable cycles in this case. Note that the bifurcation
diagram differs from the bifurcation diagram in the
previous case. For example, it has wider periodic
windows. Now the superstable cycles involve two
extrema, and the corresponding values of parameter
λ accumulate at the point λT = 2.18603861533 with

another universal factor δ ' 7.28469. These points
are called tricritical points by Chang et al. [1981].
They are terminal points of Feigenbaum’s critical
curves in parameter space [Kuznetsov et al., 1997a,
1997b].

The 1D map also demonstrates non-
Feigenbaum period doubling along the line λ = ϕ,
which corresponds to mapping the minimum onto
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(a)

(b) (c)

(d) (e)

Fig. 8. (a) Bifurcation diagram for the cosine map (17) in the case λ = π−ϕ. (b–e) Iteration diagrams for the supperstable
cycles of period 2–16; parameter values λ = 1.57000100, λ = 2.09330461, λ = 2.17229248 and λ = 2.18319192.

the maximum. Figure 9 illustrates “portraits” of
attractors at the tricritical points for both cases.
Figure 10 shows the scaling on the diagrams of the
largest Lyapunov exponent in the case λ = π − ϕ.

4. From 1D Map to 2D Map

Let us discuss the correspondence between the de-
scriptions of dynamics in terms of the 1D map (17)
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(a) (b)

Fig. 9. “Portraits” of attractors at the tricritical point λ = 2.18603861533 for the map (17) in the cases (a) λ = π − ϕ and
(b) λ = ϕ.

Fig. 10. Scaling on the diagram of the largest Lyapunov exponent for λ = π − ϕ.

and the 2D map (14). First, we compare the charts
of dynamical regimes in the parameter space of the
1D map (λ, ϕ) for both cases. Note, that the co-
sine is a periodic function, therefore the parame-
ter space for the 1D map has a periodic structure.
(The part presented in Fig. 5(a) corresponds to the
phase ϕ changing from 0 to 2π.) This allows us
to choose elementary “cells” in the diagram for the

Ikeda map [Fig. 11(a)]. They are regions bounded
by the following lines: B = λ/2A2, where λ = 3
corresponds to the upper boundary of the chart of
the 1D map. A =

√
2π(n− 1) and A =

√
2πn, re-

spectively, where n is the number of “cells” [see the
Fig. 11(a)].

Let us now consider in detail the region 1, which
corresponds to small values of A, and the region 3,
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(a)

(b)

Fig. 11. Parameter space for the Ikeda map: (a) Each region
corresponds to a fragment of the parameter space for the 1D
map Fig. 3(a). (b) Set of tricritical points in the parameter
space (A, B) as predicted on the basis of the 1D model.

which corresponds to larger A. We can apply the
transformation rule (18), obtain the charts for the
2D map in the new coordinate system (λ, ϕ), and
then compare them with the charts for the 1D map
(17) [see Figs. 5(a)–5(c)]. From this comparison it
follows, that the picture obtained for the first region
[Fig. 5(b)] looks rather distinct from the topogra-
phy of the 1D approximate map [Fig. 5(a)], while
the picture obtained for the third region [Fig. 5(c)]
is similar to that for the 1D map. One can make a

similar comparison for the topography of the largest
Lyapunov exponent. Such pictures are presented in
Figs. 5(d)–5(f).

From our derivation of the 1D map it follows
that the adequacy of the 1D map is determined by
the degree to which the condition B � A is ful-
filled. When we consider “cells” with higher and
higher numbers, parameter B is reduced and pa-
rameter A is increased. So it is clear, that the one-
dimensional approximation becomes more precise.
Under these conditions, corresponding to Figs. 5(b)
and 5(e), we have B about 0.3 and A about 1.5,
while in the case of Figs. 5(c) and 5(f), B is about
0.05 and A is about 5.

As already noted, tricritical points (the termi-
nal points for the curves of Feigenbaum’s transition
to chaos) are very typical points for 1D maps. We
have found two such points for the 1D map (17)
which correspond to mapping the maximum into
the minimum and vice versa. We can determine the
corresponding points in the parameter space (A, B)
for the 2D map (14) using the relations (18). In
Fig. 11(b) these points are plotted in the parame-
ter plane for the 2D map. Note, that instead of two
points we have a set of points, because the cosine is
a periodic function. The region around each pair of
these points is shown in Fig. 5(a) for the 1D map.
By comparison of Figs. 11(b), 5(a) and 1, we can
see that this configuration, which demonstrates a
typical structure of parameter space, is present for
the 2D map.

However, on the basis of the renormalization
group approach one can prove, that tricritical points
in the parameter space do not survive after the
second dimension is involved. They are actual-
ized only in some restricted sense, up to a defi-
nite level of refinement [Kuznetsov et al., 1997a,
1997b; Kuznetsov, 1992]. Thus, the correspond-
ing universal configuration of the parameter space
in the vicinity of the tricritical point is destroyed
when we observe the chart for the 2D map with
sufficient resolution. The better the 1D approxi-
mation is, the deeper can we observe the tricritical
behavior. It follows from comparison of Figs. 5(a)
and 5(b), that for the first “cell” this configuration
is already destroyed.

5. Conclusion

In the present work three relevant classes of dynam-
ical systems were examined. We derived 2D and 1D
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maps for the nonlinear dissipative kicked oscillator
with cubic nonlinearity, and the topography charts
of dynamical regimes were plotted for all models.
The topography charts for the largest Lyapunov
exponents were presented for 1D and 2D maps,
and we discussed the correspondence between these
charts.

What we have established, primarily, is that for
systems with complex dynamics, we must discuss
not only physical reasons to use one or another ap-
proximation, but also the presence of phenomena of
complex dynamics must be taken into account. Es-
pecially this concerns the global bifurcation picture,
the points and lines at which the bifurcations accu-
mulate. The situation becomes complicated, when
we consider the regions with the most complex orga-
nization. Universality of nonlinear dynamical phe-
nomena at the onset of chaos is not so simple as in
the one-parameter case.

In the case at issue, when we turn from the
description in terms of differential equations to 2D
maps, the efficiency of the approximated method is
lower than when we go from a 2D map to a 1D map.
The fine-scale structure of long-periodical regions
in the parameter space near the resonances (the
cusp points) is badly reproduced in the frequency–
amplitude parameter plane of the oscillator, while
for the 2D map the fine-scale structure in the vicin-
ity of the cusp points is well described by the 1D
map.

Our investigations confirm a conclusion from
the renormalization group theory that the correla-
tion between 1D and 2D maps is trivial only in the
case of one-parameter analysis. The Feigenbaum
universality is the same in both cases. On the other
hand, for 1D map the points are typical which are
the accumulation points for the “crossroad areas”
based on the increasing period cycles. These points
are the terminal points of the Feigenbaum critical
curves in parameter space. Their vicinities are uni-
versally structured. For 2D maps the corresponding
picture arises only in the form of some intermedi-
ate asymptotics. However, it can have a very high
similarity. Therefore even a glance at the topog-
raphy of the dynamical regimes of a 2D map can
reveal the corresponding regions in the parameter
space and allow us to judge the sufficiency of a one-
dimensional approximation. Certainly, this is im-
portant qualitative information in the investigation
of new systems.
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