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At the critical point of the golden-mean quasiperiodic transition to chaos we show the presence of an infinite
sequence of unstable orbits in complex domain with periods given by the Fibonacci numbers. The Floquet
eigenvaluegmultipliers) are found to converge fast to a universal complex constant. We explain this result on
the basis of the renormalization group approach and suggest using it for accurate estimates of the location of
the golden-mean critical points in parameter space for a class of nonlinear dissipative systems defined analyti-
cally. As an example, we obtain data for the golden-mean critical point in the two-dimensional dissipative
invertible map of Zaslavsky. We give a set of graphical illustrations for the scaling properties and emphasize
that demonstration of self-similarity on two-dimensional diagrams of Arnold tongues requires the use of a
properly chosen curvilinear coordinate system. We discuss a procedure of construction of the appropriate local
coordinate system in the parameter plane and present the corresponding data for the circle map and Zaslavsky
map.
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I. INTRODUCTION The simplest model in which the discussed transition oc-
curs is the one-dimensional circle map

Very often the creation of several oscillatory components
comes before the transition to chaos in multidimensional
nonlinear systems. The frequencies of these components nor-
mally depend on control parameters. If the frequency ratios
fi/f; are irrational, the attractor is a torus of dimension de-Here ¢ is the dynamical variable is discrete time, and)
termined by the number of relevant oscillatory motions.and k are parameters. The winding numbew
When the values of;/f; become close to rational numbers, =lim,_..6,/n plays the role of the frequency ratio. The
the oscillations show a tendency to mutual synchronizatiovariable 6 is interpreted as a kind of phagenly the frac-
(mode locking accompanied by formation of an attractor tional part of @ is of relevancg so regimes with rational
that is a lower dimensional torus or a periodic orbit. Quasi-winding numbers are regarded as periodic.
periodic and periodic regimes can undergo further bifurca- In Fig. 1(a) we present a chart of the parameter plane
tions, which may finally lead to chaos. This picture is re-(k,Q). Regions of different dynamical behavior are shown
ferred to as the route to chaos via quasiperiodicity. Startingn gray scale. Domains of synchronization, known as Arnold
from seminal works of Landa{il] and Ruelle and Takens tongues, correspond to rational winding numbers. The hori-
[2], numerous studies have been devoted to different aspectental linek= 1 separates two essentially distinct parts of the
of this picture[3—-29. parameter space: below this line the map is invertible, above

Let us take a two-dimensional torus and tune the paramthis line it is not. Atk<<1l quasiperiodic regimes occur be-
eters of the dynamical system to keep fixed the irrationatween the tongues.
frequency ratio of two excited oscillatory components and In the parameter plane one can find a cutie Q (k) of
avoid mode locking. In the parameter space this correspondspnstant irrational winding numbev=w = (/5— 1)/2 [Fig.
to a path along a definite curve. This curve may be termi4(p)]. Just on the border of the invertibility loss this curve
nated by a critical point separating quasiperiodic and chaotigerminates at the point
regimes. For a detailed investigation of such a transition it is
common to choose the golden-mean frequency raid ,
=w=(\/5—1)/2. The rational approximants for this are
represented by ratios of Fibonacci numbersgy,,
=Fn_1/Fn, whereFy=0F,=1F . 1=F,+F,_1. It is  which will be referred to aghe GM critical point (GM
convenient to deal with the golden mean because of the sinstands for “golden mean). Scaling properties intrinsic to
plicity of the theoretical analysis. Another reason followsthis point were discovered in numerical computations by
from the fact that this irrational number is characterized byShenker[3]. The theoretical foundations were stated by
the slowest convergence of the sequence of rational approxiFeigenbaum, Kadanoff, and Shenkét, and by Rand, Os-
mants. Due to this, the fine structure of the parameter spadtind, Sethna, and Siggi®,6]. They developed the renor-
near the golden-mean frequency ratio in experiments anthalization groupgRG) approach based on constructing a se-
computations appears to be more distinguishable than afuence of evolution operators—maps describing the
other irrational ratios. dynamics in terms of properly rescaled variables over time

0, 1= 0+ Q— (k/27)sin 2776, . 1)

(ke,€2)=(1,0.606661063470 88 . .), 2
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point in this case. Some ways to solve this problem have
been discussed in the literatur23—25, but we intend to
present here an alternative approach.

To invent an algorithm for computation of the critical
point we recall a similar problem for the period doubling
transition to chaos. In that case an elegant method is known
based on so-called eigenvalue match{ig®-33. At the
Feigenbaum critical point an infinite set of unstable periodic
orbits is present. Periods are equal {8, 2nd cycle eigen-
values (multipliers) converge to a universal constapt=
—1.601D.... Thevalue of the control parameter is se-
lected to reach equality of the multipliers for two sufficiently
long periods, and it yields a good estimate for the critical
point. Alternatively, one can search for the parameter value
at which the multiplier for one period"2equalsu.. The
largermis, the more precisely the value of the parameter will
be obtained. An analogous approach was exploited in studies
of the destruction of “noble” Kolmogorov-Arnold-Moser
tori in Hamiltonian dynamic$35—-3§. In particular, for the
golden-mean frequency ratio there exists an infinite set of
unstable orbits with periods given by Fibonacci numbers.

GM critical point

Curve of constant

0 andlng number Their eigenvalues are expressed via the so-called residue,
0.45 Q 0.75 which tends to a universal constant.
(b) In the dissipative case no periodic orbits occur at the GM

critical point. Nevertheless, as we show in the present paper,
a set of orbits with desirable properties does exist in the
complex domain of the dynamical variables. Hence, applica-
ton of a similar method for computation of the GM critical
point becomes possible. As a basic example, we take a popu-
1Jar two-dimensional invertible map, which has been derived
from realistic physical assumptions—the standard dissipative
map of Zaslavsky9,25,35.

Having found accurately the critical point GM for this
map we will discuss in some detail the intrinsic scaling prop-

intervals given by the Fibonacci numbers. From the rcerties, which are common for all representatives of the uni-
analysis the constants were obtaifi@e-6,28,29 responsible versality class including the one-dimensional circle map

FIG. 1. (a) Parameter plane of the circle mép). Regions of
synchronizatior{Arnold tongueg are shown in gray; winding num-
bers are indicated inside the tongues. White regions correspond
quasiperiodicity(below k= 1), chaos(abovek=1), or unrecog-
nized long periods(b) Illustration of the GM critical point defini-
tion: in the parameter plane this is a terminal point of the curve o
constant irrational winding number/6— 1)/2 located at the border
of invertibility loss. In the diagranta) the critical point is marked
by a small cross.

for scaling in the phase space [3-9,16,19,20,28,291n particular, we pay special attention
to the self-similar arrangement of the picture of Arnold
a=—1.288574553954 368 86 . . (3) tongues near the GM critical point. To our knowledge, no
convincing illustrations of two-dimensional scaling have
and in the parameter space been presented in the literature, even for the circle map. Ap-
parently, the reason is a subtlety of the question: as we argue,
6;=—2.833610655891167 99 . ., some special nonlinear coordinate change must be imple-
mented to define in the parameter plane a coordinate system
5,=a?=1.660424381098 70068 . .. (4) appropriate for demonstration of the scaling property. With-

out properly chosen local coordinates no perfect correspon-

It is commonly believed that a critical point of the same dence of the parameter space arrangement on different scales
kind occurs in nonlinear dissipative systems of different na-can be observetsee, e.g.[34]).
tures. This assertion is supported by some experimental and In Sec. Il we present numerical evidence that the circle
numerical studies, including experiments on Rayleigh-map at the GM critical point possesses an infinite sequence
Benard convection9,13,14,17,25 of orbits (cycleg in the complex domain with periods given

As known, the simplest class of continuous time system$y Fibonacci numbers and with Floquet eigenval(rasilti-
possessing complex dynamics and chaos is represented pifers) converging to a universal complex constant. In Sec.
three-dimensional flows. Using construction of the Poincarell we briefly reproduce the RG analysis for a one-
section, one can reduce the description of the dynamics to dimensional map and use it to explain the results of the pre-
two-dimensional invertible map. In the parameter space ofiious section. In particular, the value of the universal multi-
such a system the terminal point of a curve of constant windplier is obtained from the solution of the RG equation. In
ing number cannot be associated with violation of the invertSec. IV we formulate a method of precise computation of the
ibility. So the question arises of how one can find the criticalcritical point. It consists in selecting appropriate values of
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TABLE I. Complex cycles and their multipliers at the GM criti- 3071900=dx119%y+1dy1/9%
cal point of the circle magl): k=1, ()=0.606 661 063 470 185. -
-
Period 0o “ = HO [1—kcos 2m(X,+iyn)]. 7)
n=
5 0.11632986% 0.10728403iL  0.744652+ 2.59592%
) —0.092281354 0.08230711#4 0.7468742.519519 From Table | we observe that the multipliers of the cycles
13 0.07121294%0.06368836B  0.741626-2.556631  With Fibonacci periods tend to a certain complex vajue

21 —0.05563708%0.049219831 0.742948 2.536090  ~0.742}2.5428.
34 0.043111983 0.038153890  0.741842 2.546574 It is worth mentioning that each member of the sequence

55  —0.03352672%0.029566354 0.742304 2.540931 of unstable cycles given in Table | has a complex conjugate
89 0.02600878% 0.022934660  0.742035 2.543873 partner. Hence, there exists a sequence of cycles with multi-

144 —0.020197246 0.017789510 0.742174 2.54231p  Pliers converging to a conjugate constant =x7% . It may
233 0.0156728530.01380311B  0.742103 2.543132 be conjectured that both these conjugate sets of periodic or-

377 —0.0121654200.010710054 0.742143 2542697  DitS are infinite.
610 0.0094408760.00831098D0  0.742123-2.542927
987 —0.007327078 0.006449351L 0.742134+2.542804
1597 0.0056861940.005004900  0.742128-2.542878 To explain the results of the previous section we employ
2584 —0.004412866-0.003883968 0.742134F2.54282% the RG technique developed i4—6,19,20,28,2P The main

idea consists in considering a set of evolution operators that
describe the dynamics at the critical point over increasing
control parameters to reach the universal value of the mU|t|t|me intervals. For the case of the go|den_mean W|nd|ng
plier for a complex orbit of period given by a sufficiently number, these time intervals are selected as subsequent Fi-
large Fibonacci number. The method is applied to theyonacci number§ .

Zaslavsky map, and the GM critical point is found. In Secs. | et us introduce a shortened notation for the circle map,
V and VI we discuss and compare the scaling properties of

the Zaslavsky map and the circle map at the GM point and in Onr1=1(6,), (8)

its neighborhood.

Ill. RENORMALIZATION GROUP ANALYSIS

and consider the evolution of some initié}, over a time
interval given by a Fibonacci numbeét,, ;. As the rational
Il. COMPLEX PERIODIC ORBITS OF THE CIRCLE MAP approximant of the winding number B, /F,,,;, we con-
Let us suppose that the dynamical variable in the circleclude that, ¢ is close toFy. We recall that only the
map(1) is complex, although the parametélsandk remain  fractional part ofé, is relevant and represent the evolution
real. The substitutiod,,=x,+iy, and separation of real and operator ovelF . ; iterations as
imaginary parts yields
fm(0)=fme1(0)—Fp,
Xn+1= Xn+ Q= (kl27)cosh 2ry,sin 2mx, , =f(f(f(...(6)...))—Fp. 9

(F+1 times)

Yn+1=Yn~ (K/2m)sinh 2my,cos 2mx,, . ) According to the Fibonacci relatioB,,,;=F,+Fn,_; we
write
An orbit is regarded as a cycle of perigdf
frn1(0) = Frn1(fn(6)). (10)
Xntq=Xn TPy Yniq=Yn ) [Note that for any integep the functionf(#) obeysf(6

+p)=f(6)+p.] Next, following Refs[4—6], at each stem
wherep is an integer. In Table | we summarize data fromwe implement rescaling of the dynamical variable by the
numerical calculations revealing a set of unstable compleXactor «™ and rewrite Eq(10) in terms of the renormalized
cycles with periods given by Fibonacci numbers. Among theevolution operatorg),(0)=a™f ,(a~M6):
points of the periodic orbits for the presentation we have

selected those that obey a scaling relation: The ratio of two Om+1(0) = a’gm_1(a " gm(a 10)). (11
subsequent complex humbers in the left column of the table
converges fast to a real value=—1.288% .. .. This expression defines the RG transformation.

The last column of Table | contains the Floquet eigenval- If the parameters of the original map correspond to the
ues, or multipliers, for the periodic orbits found. The multi- GM critical point, then the functional sequengg(6) con-
plier is defined as a factor determining evolution of a smallverges to a definite limitg(x)=Ilim_.gn(X). The limit
perturbation over one period. For our one-dimensional function g(#6) is the fixed point of the RG transformation
complex map the value df; is an analytic function oy,  (10) and, hence, must satisfy the functional equation of
and the multiplier may be evaluated simply as a derivative:Feigenbaum-Kadanoff-Shenker:
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g(0)=a?g(a *g(a10)). (12 In the final part of this section we recall the re-

sults of analysis of perturbations for the fixed point

This function represents a form of the long-time evolutionof the Feigenbaum-Kadanoff-Shenker RG  equation

operators in terms of the rescaled dynamical variable. It i$4—6,19,20,28,2p We search for a solution agmy(6)

convenient to accept normalization gf6) to unity at the =9(6)+ehy,(6) and, accounting for terms of the first order

origin. Then this function may be found directly from solu- in &, obtain

tion of Eq.(12) [4-6,28,29. With the help of a finite poly-

nomial approximation fog(#) one can reduce the functional hims1(0)=a?g’ (@ *g( 6/ a))hy( 6l )

equation to a set of algebraic equations for the coefficients of -1

the expansion, and solve them numerically by means of the T ahm-y(a g0/ a). (16)

multidimensional Newton method. We have reproducedThe substitutiorh

= m i
these calculations and find the universal function m(¢)=20"h(6) leads to the eigenproblem

2 — 27 -1 -1
9(6)=1+0.765 184°—0.215 464°— 0.053 46&° 5h(x)=da%g’ (a "g(X/ a))h(x/a) + ah(a g(X/“)()in

+0.032 92$'2+0.001 23H*°—0.004 3048 _ . o L
Computations yield two essential eigenvectors with eigen-

+0.000 66%2*+ 0.000 501%*+ 0.000 179" values §;=—2.8336. ... andd,=a?=1.6602 ... [see
20 33 39 Eqg. (4)]. The first eigenfunction has a Taylor expansion of
—0.000 042"+ 0.000 031"~ 0.000 004" - - the form hy(#)=1+=h,6°". In the circle map it corre-

(13 sponds to a perturbation preserving the cubic inflection point
(a shift along the linek=1). The second eigenfunction
and the constantr=—1.2885745 ... in excellent agree- h,(6) contains all powers of the argument. This perturbation
ment with Refs[4-6,28,29. Now we take an additional step appears due to a departure from the critical point along the
and suppose that the variabfeis complex. Using Eq(13)  curve of constant winding number. A general arbitrary shift
one can check that the universal functio(¥) has the fol- of parameters from the GM critical point gives rise to both
lowing fixed point: eigenvectors. In this case the evolution operators over time
intervalsF,, will behave asymptotically as
0.=9(0,),0,=0.68668...+i0.6043@.... (14
Im(X)=9g(x)+ C167h1(X) + C2875(X). (18
and the derivative at this point is
Here the coefficient€; andC, depend on the parameters of
n+=9'(6,)=0.7421308...+i2.5428479 . . .. the original map and vanish at the critical point.
(15 Suppose we consider the dynamics at some point of the
parameter space(()), where the coefficients in E¢L8) are
We recall that for largen the mapf ,,(#), which describes  C, and C,. If we find another pointK’,Q’) at which the
the dy_nami_cs of t_he circle map at the GM cri;ical point over qgefficients areC]=C,/58,, Cy=C,/5,, then the evolution
Fm+1 iterations, is represented by the functig¥) up 0 gperator, corresponding . ; iterations at the new point,
normalization of the dynamical variable. Hence, each mapsincides with the operator fd¥,, iterations at the old point.
fm(0) will have a complex fixed pqlnt, and this pomt COITe- Hence, at both these points the type of dynanfjeriodic,
sponds to a complex cycle of perid,, , for the original  quasiperiodic, chaotjowill be the same. The regimes differ
map. Starting points for these cycles behavéas ™™, and  only py the characteristic time scale: at the poikt, ') it
multipliers given by the derivatives df(6) are equal as- g larger by the factoF,,.,/F,,, which tends tow™ ! asm
ymptotically to the derivative of the universal function atthe _, ,, 5| quantitative characteristics of the two regimes are
fixed point. This explains the results of the previous SeCtionexpressed one via another by more or less trivial relations.

From Table | we see that the empirically obtained multipliersgq, instance, the Lyapunov exponents are connected as
agree with the value of derivativ@5), and the ratio of start-

ing coordinates for the complex periodic orbits coincides Ak, QN =wAk Q). (19
with the scaling constan®).

The coefficients in formul&l3) are real; hence, the fixed The closer to the critical point, the more precise are the scal-
point 6, has a complex conjugate partner—the fixed pointing relations.
0_= 6% with the derivativeg’ (0_)=u_=u?% .

.On the basis of the RG analysis we conclgde that t.he IV. GM CRITICAL POINT IN THE STANDARD
existence of.a set of unstable cycles, vvhqse periods are given DISSIPATIVE MAP OF ZASLAVSKY
by Fibonacci numbers and whose multipliers converge to the
universal constant, is an attribute of the universality class In this section we formulate a method for accurate com-
associated with the GM critical point, rather than a propertyputation of parameter values corresponding to the critical
of the concrete circle map. This circumstance can be expoint. As an example, we take a well-known two-
ploited to search for the critical point in other systems, in-dimensional map—the standard dissipative map of
cluding invertible two-dimensional maps. Zaslavsky[9,25,35. The method we suggest may be applied
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TABLE Il. Subsequent approximations for the GM critical point
in the Zaslavsky map atl=0.3 found from the conditiortSFm
=pu,=0.74213053 2.542 847 5B,

Period
of complex
orbit F, k Q
8 0.969272363707 0.610494183322
13 0.987131540725 0.610154623294
21 0.986520082743 0.610155713052
34 0.985390987646 0.610175758867
55 0.984925711397 0.610181199215
FIG. 2. Parameter plane of the dissipative Zaslavsky m&p 89 0.984745232773 0.610183894787
Regions of synchronizatiofArnold tongueg are shown in gray; 144 0.984693619730 0.610184570378
periods are indicated inside the tongues. White regions correspond 233 0.984676474491 0.610184812937
to quasiperiodicity, chaos, or unrecognized long periods. The GM 377 0.984672128558 0.610184871753
critical point found numerically is marked by a small cross. 610 0.984670736356 0.610184891090
987 0.984670412056 0.610184895527
also for a wide class of other maps and flows possessing the 1597 0.984670306523 0.610184896984
GM critical point. 2584 0.984670284034 0.610184897293

The dissipative Zaslavsky map has been derived for some

realistic physical systems and red@s25,33
Ony1= 0,1+ Q—(ki27)sin 276, +dr,,
Mi1=dr,—(k/27)sin 27 6,, (20
where 6 and r are dynamical variables, an@d, k, d are
parameters. Foad=0 the map reduces to the circle mélp.
So Q) andk have essentially the same nature as in the circle
the second dimension. As in the circle map, the variable

has the sense of a phase, so only periodic functiortsméy
have a physical meaning.

It can be found that the Jacobi determinant of the map i&nd two complex multipliers may be calculated as eigenval-
ues of the Jacobi matrix

(aeT/aeo

constant and equal @ The map is invertibled,, andr, are
expressed uniquely vié,,,; andr, ;. The Zaslavsky map
may be regarded as a Poincameap for some three-
dimensional flow.

In Fig. 2 the chart of dynamical regimes in the parameter
plane k) is shown for fixedd=0.3. Periodic behavior is
observed inside the Arnold tongues. While the paramnieter
not large, quasiperiodicity occurs between the tongues. Cha-
otic regimes take place for larg&r in the upper part of the
diagram. We assume that a GM critical point of the same
universality class as in the circle map exists in the paramete]t
plane. Certainly, it must belong to the curve of constant|
winding number w=lim, ...6,/n=w=(J5—1)/2. How-
ever, the map is invertible everywhere, and the criticality
cannot be associated with violation of the invertibility. To
invent an appropriate algorithm for computation of coordi-
nates for the critical point we exploit the existence of a set of
complex periodic orbits with the properties stated in Secs. Il
and IIl.

Xnt1=Xn+ Q= (ki27)cosh 2ry,sin 27X, +du,,

Vnt+1=Yn— (k/27)sinh 277y cos 2mx,+dv,, (21

Ups1=du,— (k/27)cosh 2y, sin 27X, ,

Uny1=dv,— (k/27)sinh 27y ,cos 27X, .

art196,

:(

he determinant of this matrix equad€, whered<1. For
arge T the determinant becomes very small in modulus, so
one multiplier appears to be approximately zero, and the
other is given by the trace of the matrix:

GT: 00+ p,

X1 1 IXp+ 10yl 9%
ﬁuT/(9X0+ i O”UT/(9X0

a0tlarg
artlorg

. : ; ! ) If we have a cycle of periodl starting at the point
map, while the third parametet is responsible for adding (¢, ), then

rr=rq(preal integey, (22

X1l dug+idyr/dug
&UT/&UO+ | (9UT/(9U0 )

(23

MT= ST: &XT/(9X0+ (?UT/(?UO—I— i ((?yT/(?X0+ (9UT/(9U0) .

(29)

Let us fixd and try to find values ok and ) at which the

As the first step, let us extend the map into the complexnap will have an infinite sequence of unstable complex
domain. We assume that both dynamical variables in Eqcycles of periods given by Fibonacci numbers, and with trace
(20) are complexp=x+iy, r=u+iv, while the parameters asymptotically equal to the universal constdh6). These
k,Q,d remain real. Then, instead of E0), we write values ofk andQ will give an estimate for coordinates of the
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TABLE Ill. Coordinates of GM critical point in dependence on one particular valuel=0.3 are summarized in Table Il. The

the parameted in the Zaslavsky map.

parameter values clearly demonstrate convergence to a defi-
nite limit, which is the GM critical point for the Zaslavsky

d ke Q¢ map. To find this point with high precision we have pro-
0.0 1.00000000000 0.606661063470 duced computations using 60-digit arithmeti(_: and Fibonacci
01 0.09349985654 0608054206127 numbers such as 46368 and 750 25. This yields

0.2 0.98856245192 0.609209827978 k.=0.98467028408. . .,

0.3 0.98467027409 0.610184897429

0.4 0.98149556207 0.611022944250 0.=0.610184897296 4. .. (26)

0.5 0.97883777906 0.611753902740

In Fig. 2 this point is marked by a small cross.

In three-dimensional parameter spadée,K,d) there ex-
GM critical point: the larger the period, the more precise isists a curve consisting of the GM critical points. In Table IlI
the estimate. For a given Fibonacci numlgy we have to  we present their coordinates for different valuesdoNote
solve numerically the following set of six equations: that ford=0.5 our data are in excellent agreement with those
of Ketoja[25].

Xg (Xg,Y0,Ug,00,K, Q) —F - 1=Xg,
m
V. SCALING PROPERTIES OF DYNAMICS AT

YE, (X0,Y0,Uo,v0,K, Q) =Yo, THE GM CRITICAL POINT

In Table IV we present numerical data for the complex
orbits of periods given by the Fibonacci numbgrs from 8

(25  to 1597 at the GM critical point. Observe that all the multi-
pliers are approximately equal to the universal constant

It is possible to select one point at each orbit to ensure that

(9Xg 9%o+ U [dUg) =Repu , the ratios  @m-1—0m-2)/(0n—0On-1) and (-1
—TIm_2)/(rm—rm—1) converge to the universal constamt

(dYe | 9Xo+ dvg /dug)=Im =—1.288% ... (see the second and third columns of Table

IV). These points tend to a definite limit as

UFm(Xo,yo,Uo,Uo,k,Q):UO,

UFm(Xo,yo,Uo,Uo,k,Q):Uo,

to find six unknowng, ), Xg, Yo, Ug, vo. This may be done
by means of the multidimensional Newton method. The cru-
cial condition of success is to have an appropriate initial hereK dK | tant d
approximation for the solution. For cycles of moderate peri—W erefy andis, are some compiex constants an
o_ds we can start frond=0, with th_e known data fo_r the 9.=—0.0010666..., r.——0.037163@...

circle map, and then trace the solution for gradually increas- (29)

ing d up to a desirable value. For larger peridelg another

hint is possible: we can use data for previous periods t@re found to be real. We will refer to the poini(r;) asthe
guess an initial approximation by means of scaling relationsscaling centerFor the Zaslavsky map it plays the same role
see the discussion in Sec. V. The results of computations fas the origin(inflection poinj in the circle map.

0|:m5 0C+ Kla_m, r,:mEI‘c-l- Kza_m, (27)

TABLE V. Starting points of complex cycles and their multipliers for the Zaslavsky rfi#) at k
=0.984 670284 088(2=0.610 184 897 296 5d=0.3.

Period 0o r m

8 —0.085918149-0.07579854iL  —0.078783593-0.034202902  0.749444-2.553330
13 0.06513471% 0.05952301B —0.004659935-0.029736586  0.737749-2.550092
21 —0.052559886-0.04542021pR —0.062206782 0.02120660D 0.738585+2.542746
34 0.038977024 0.03556063R —0.01761670%0.017614760 0.739674+2.543508
55 —0.032147406-0.02734045b —0.052250324-0.01299144iL 0.740865+2.54242%
89 0.02307799+% 0.021339526 —0.025407804 0.01049866R 0.741459 2.54290%
144 —0.019800186-0.016472154  —0.046254429 0.007900734  0.741822-2.542700
233 0.0134793880.01282926P —0.0300896410.00628174ir  0.741978-2.542858
377 —0.0123527150.009925091L.  —0.042640889-0.004785266  0.742065-2.542807
610 0.007694500 0.00771948b —0.032905266-0.003768004  0.742099-2.542852
987 —0.007864736-0.005979666  —0.04046316%0.002891580  0.742117% 2.542837
1597 0.0042098450.00464682i7 —0.034599563 0.00226372iL 0.742124+2.542849
2584 —0.005161126-0.003602216 —0.0391509750.00174493B 0.742128+2.542844
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1.0
-
S
£
-4 A(F,)=|e|" 0.5
-5 o T
55 89 144 233 377 610 987
n
FIG. 3. lllustration of the scaling property for the orbit of the 0.0
Zaslavsky map launched from the scaling center: dependence of the -1 ] 1
distance from the start point on the number of iterations. Double
logarithmic scale is used. ]
To observe scaling in the dynamics of the Zaslavsky map ) ]
in the real domain let us consider an orbit starting at the //
scaling center. In Fig. 3 the distance of the orbit from the J

initial point is plotted on a double logarithmic scale. Observe
that the orbit returns closer and closer to the scaling center FIG. 5. Cumulative distribution function for invariant measure
after the periods given by Fibonacci numbérg, and the on the attractor at the GM critical point in the Zaslavsky map and
distances behave al,x|a| ™. illustration of its scaling property: a fragment of the whole picture
As we mentioned, only periodic functions @fcan have a is shown under subsequent magnification by factars
physical meaning; such an appropriate variable is, for ex—1.2885 ... andg=—(y5+1)/2 along the horizontal and ver-
ample,s=sin(27#). In Fig. 4 we show the attractor of the tical axes, respectively.
Zaslavsky map at the GM critical point in the plangr().
The cross indicates the location of the scaling center. Al-—1.288% ... along the horizontal axis, and by a facier
though this critical attractor itself looks rather like a cross=—(y5+1)/2 along the vertical axis(The minus sign
section of a smooth torus, it has, in fact, a fractal naturéneans that the orientation of the axes is reversed at each
because of the distribution of invariant measure. To make isubsequent step of the rescalin@bserve that the pictures
visible, we use in Fig. 4 gray scale coding, which representseproduce each other with good precision.
the relative probabilities of visiting different parts of the at-  To reveal fractal properties of the invariant measure one
tractor. can exploit the singularity spectrum introduced by Halsey
Figure 5 illustrates self-similarity intrinsic to the fractal et al. [39]. We have considered a sequendg ,(,) gener-
distribution of the invariant measure on the critical attractor.ated by the Zaslavsky map starting from the scaling center
The upper diagram is a plot of the cumulative distributionup to the iteration numben=F,,,=2584 and define the
function in dependence on the phase variableet us take a diameters of covering elements bs= A 49?+Ar2i , Where
fragment of the picture near the scaling center and consider i 9, = (6, — 0i+Fm+1)/27-r(mod 1), Arj=r;— MivE, Lo and
at sgveral steps c_>f subsequen'g magnificatiba bottom row  ipeir probabilities ap,=p=1/F,, for i=1 ... F,. Next,
in Fig. 5. Each time we redefine the scale by a facior we construct the sums

015 (m) g qg
—— ryv= Y=F, I, 29
//_ \/) qr i=1p i m & i ( )
/
/ // consider their dependence om and require them neither to
ro . L vanish nor to go to infinity. This yields
| (m) (m)
s _logl'y” logl'y;
)= lim ~ 30
-0.15 - o) m_x 109Fm  logFpy (30
-1 0 1
sin 270 for sufficiently largem. Then we definex=(dg/d7) ! and

FIG. 4. Attractor of Zaslavsky map at the GM critical point = @d— 7, and draw the parametric plot 6{«).
drawn on the phase plane (sin@r). Gray scales code relative In Fig. 6 the singularity spectrum for the circle map at the
probabilities of visiting corresponding parts of the attractor. NoteGM critical point is shown by the solid curve, and the dots
that the attractor itself looks like a cross section of a smooth toruscorrespond to the singularity spectrum of the Zaslavsky map.
Its fractal properties are reflected only in the distribution of gray The excellent coincidence of the spectra gives evidence that
tones, representing structure of the invariant measure. The crodBe critical points in both maps relate to the same class of
indicates location of the scaling center. universality. Generalized dimensiols, may be calculated
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f k=4.0
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.!‘ |

FIG. 6. Plot of the singularity spectrum for the attractor at the
GM critical point: solid line corresponds to circle map, squares to ‘.

the dissipative map of Zaslavsky. 20

H IM
0)2

o° o® o’ °

|
from D= 7/[q(7) —1]. The Hausdorff dimension of the (a)

critical attractor is equal to 1, although the information and

correlation dimensions have nontrivial values=0.922 and 40 k=40
D4=0.866, the same for the circle map and the Zaslavsky
map.

Let us turn to discussion of the Fourier spectrum gener-
ated by the Zaslavsky map at the GM critical point. Since
only periodic functions off have physical meaning, we
again introduce a variabls,= sin 276,=sin 2mx,cosh 27y,
+i cos 2mx,sinh 2rry,,, and will be interested in its Fourier
expansion. We can arrive at the Fourier spectrum at the criti-
cal point by considering subsequent complex periodic orbits ‘ ‘

Ll
(DS

S/F“(dB

of period N=F, for larger and largem. The spectral am-
plitudes are defined in the standard manner as

-20

|h| | H
o' 2

Tl
@

N
1

> Spexd — (27imn)/N], (31 FIG. 7. Fourier spectra for time series generated by Zaslavsky
N =0 map at the GM critical pointapproximated by the cycle of period

B ) F,=2584):(a) logarithmic plot for amplitude versus frequendip)
where f=m/N is the frequency of thenth component. In double logarithmic plot; exponefktis fitted empirically.

Fig. 7(a) we present the spectrum obtained numerically at the
GM critical point of the Zaslavsky map in the coordinates . .
used usually in experimental studies: the logarithm of the Let us place the origin O.f the new _coordlna_te system
amplitude versus frequency. To show the self-similar struc _Cl’CZ) at_the GM_ critical point. _Arbltrarlly, we direct the
ture of the spectrum, we follow RefE3,6] and plot the spec- first coordinate axis, along the Ilnek:(;onst. In contre_lst,
trum on a double logarithmic scale. As observed in Fig),7 e second coordinate curve, along which the valuexa
the same arrangement of spectral peaks is reproduced Wimeasured, must be defined carefully to exclude a contribu-

proper periodicity at intervals along the axis of logarithm of tion of the sen_ior eigen\{ector for any shift ffo”? t_he_critical
frequency. point along this curveFig. 8). It appears that it is just a

curve of constantgolden meahwinding number. One could

S(f)=S(m/N)=|cp?,

Cn=

VI. SCALING PROPERTIES OF THE PARAMETER

PLANE IN THE VICINITY OF THE GM CRITICAL POINT k

In this section we intend to demonstrate two-dimensional
scaling of the parameter space near the GM critical point, OIS E ¢
which follows from the considerations in the last part of Sec. Rt
[ll. For this aim we need to define an appropriate local co-
ordinate systengscaling coordinatgsn such a way that si- Critical point GM
multaneous scale change along the coordinate axes by fac- Curvocrconstnt ) C
tors 8; and 8, would ensure realization of similar regimes. winding number 2\

As we do not know explicit expressions for the coefficients O
in Eq. (18) via parameters of the model mafl and (20),

the problem must be solved numerically, with sufficient ac- FIG. 8. Definition of scaling coordinates in the neighborhood of
curacy. the GM critical point.
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0.6

3
|
e

-0.6
01 0-Q. o1

FIG. 9. Chart of Lyapunov exponent in the parameter plane of the circle map with fragments shown separately in scaling coordinates
under subsequent magnification by factéysand 5, along the coordinate axes. Gray scales code values of the Lyapunov expofremt
—oo (light gray) to —0 (dark gray; zero and positive values are designated as white. For the pictures in scaling coordinates the coding rule
is redefined in accordance with E{.9) at each subsequent step of magnification.

try to represent this curve by means of Taylor expansiorof the picture near the GM critical point with the borders
Ak=c,, AQ=Ac,+Bci+Cci+---. However, if we take going along the coordinate curves=const andc,= const,

into account the concrete relation between scaling facgtprs and redraw this fragment separately in scaling coordinates.
and d,, this expression may be cut. Indeed, suppose we conFhen the smaller fragment of the picture is magnified by
sider a set of the parameter plane pictures under the scalactorsé; and 6, along the horizontal and vertical axes, re-
changec, =8, ™ and c,= 8, ™ for subsequenm. If we ne-  Spectively, and the gray scale coding is redefined in accor-
glect the Taylor coefficient atl, the deflection from the true dance with Eq.(18). This procedure of rescaling may be

coordinate curve will be of ordes; ™, which yields a con- repeated again and again. Observe the excellent correspon-
tribution to the senior eigenvector of Ordéfjmgj As one dence of the structures on different scales. The deeper the
i

can see from Eq(4), the eigenvalues for the GM critical level of resolution, the better the correspondence between the

point satisfy 8,<| 81|, 52<|&,, but 62>|4,|. Hence, it is  PICtUres:

necessary to account for only linear and quadratic terms in

the Taylor expansion. So we may approximate the curve of VII. CONCLUSION
constant winding number by a parabola and define scaling

coordinates near the GM critical point by the ansatz The results of this paper should be regarded in the context

of research directions that deal with the study and classifica-

tion of critical behavior at the border of chaos. We mean

situations associated with various classes of quantitative uni-
heversality, allowing description in terms of the renormaliza-

which is appropriate for both the circle map and the h diff £ criti
Zaslavsky map. As we have found numerically, for the circletion group approac[ﬁ?a]. W en some different type of criti-
cality is discovered in a simple artificial model, the question

Q=Q.+c;+Ac,+Bcs, k=k.+¢,, (32

map o . o ) i
of the possibility of its observation in realistic dynamical
A=—-0.01749, B=—0.00148, (33  Systems immediately arises. Examples of such systems
should be presented with a convincing demonstration of the
and for the Zaslavsky map dt=0.3 corresponding dynamical properties in numerics and experi-
ments.
A=—-0.013796, B=—0.004543. (39 Although the critical situation associated with destruction

of the golden-mean two-frequency quasiperiodicity and the

In Figs. 9 and 10 we demonstrate scaling of the parametegM critical point has been known for about 20 years, the

plane topography for both maps near their GM criticaldetails are not complete yet. In this article we have found an
points. Gray tones code values of the Lyapunov exponent. linteresting property of the critical dynamics associated with
both cases the first plot shows a part of the parameter plartee GM point. That is, an infinite set of Fibonacci-period
in “natural” coordinates k,{}). We then select a fragment unstable orbits occurs in the complex domain of dynamical

0.6

0-Q, o1

FIG. 10. Chart of Lyapunov exponent in the parameter plane of the Zaslavsky may €08 with fragments shown separately in scaling
coordinates under subsequent magnification by facprand 6, along the coordinate axes. Gray scales code values of the Lyapunov
exponentA from —< (light gray) to — 0 (dark gray; zero and positive values are designated as white. For the pictures in scaling coordinates
the coding rule is redefined in accordance with B at each subsequent step of magnification.
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variables, and Floquet eigenvaluésultipliers) of these tion of two-frequency quasiperiodicity, say, for frequency
cycles converge fast to a universal complex constant. Thigatios associated with the silver mean and other irrationals.
result follows also from the RG analysis; hence, it has to beAs a matter of principle, we stress the fact that analysis of
regarded as an attribute of the whole universality class, najynamics in the complex domaiin our case, the study of
of some particular model. The stated property may be usefdomplex periodic orbitsleads to useful conclusions about
for accurate numerical estimates of the critical point Iocatioruynamics in the real domain: It gives a foundation for con-
in the parameter plane for dissipative systems defined an&trycting algorithms and sheds light on properties of univer-
lytically by maps or differential equations. We have pre-sajity and scaling. Similar approaches based on complexifi-
sented the corresponding data relating to the standard dissiation of the dynamical systems under study may be
pative map of Zaslavsky. productive in other problems of nonlinear dynamics, in par-

One more essential contribution of the present work Weicylar, for deeper understanding of the dynamics between
see in the accurate analysis of two-dimensional scaling of thgrder and chaos.

configuration of Arnold tongues near the GM critical point.

That is, to observe self-similarity of this two-dimensional

picture it is necessary to use a special curvilinear coordinate ACKNOWLEDGMENTS
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