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Complex periodic orbits, renormalization, and scaling
for quasiperiodic golden-mean transition to chaos
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At the critical point of the golden-mean quasiperiodic transition to chaos we show the presence of an infinite
sequence of unstable orbits in complex domain with periods given by the Fibonacci numbers. The Floquet
eigenvalues~multipliers! are found to converge fast to a universal complex constant. We explain this result on
the basis of the renormalization group approach and suggest using it for accurate estimates of the location of
the golden-mean critical points in parameter space for a class of nonlinear dissipative systems defined analyti-
cally. As an example, we obtain data for the golden-mean critical point in the two-dimensional dissipative
invertible map of Zaslavsky. We give a set of graphical illustrations for the scaling properties and emphasize
that demonstration of self-similarity on two-dimensional diagrams of Arnold tongues requires the use of a
properly chosen curvilinear coordinate system. We discuss a procedure of construction of the appropriate local
coordinate system in the parameter plane and present the corresponding data for the circle map and Zaslavsky
map.
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I. INTRODUCTION

Very often the creation of several oscillatory compone
comes before the transition to chaos in multidimensio
nonlinear systems. The frequencies of these components
mally depend on control parameters. If the frequency ra
f i / f j are irrational, the attractor is a torus of dimension d
termined by the number of relevant oscillatory motion
When the values off i / f j become close to rational number
the oscillations show a tendency to mutual synchroniza
~mode locking! accompanied by formation of an attract
that is a lower dimensional torus or a periodic orbit. Qua
periodic and periodic regimes can undergo further bifur
tions, which may finally lead to chaos. This picture is r
ferred to as the route to chaos via quasiperiodicity. Star
from seminal works of Landau@1# and Ruelle and Taken
@2#, numerous studies have been devoted to different asp
of this picture@3–29#.

Let us take a two-dimensional torus and tune the par
eters of the dynamical system to keep fixed the irratio
frequency ratio of two excited oscillatory components a
avoid mode locking. In the parameter space this correspo
to a path along a definite curve. This curve may be ter
nated by a critical point separating quasiperiodic and cha
regimes. For a detailed investigation of such a transition
common to choose the golden-mean frequency ratiof 1 / f 2

5v5(A521)/2. The rational approximants for thisv are
represented by ratios of Fibonacci numbers,vm
5Fm21 /Fm , where F050,F151,Fm115Fm1Fm21. It is
convenient to deal with the golden mean because of the
plicity of the theoretical analysis. Another reason follow
from the fact that this irrational number is characterized
the slowest convergence of the sequence of rational app
mants. Due to this, the fine structure of the parameter sp
near the golden-mean frequency ratio in experiments
computations appears to be more distinguishable tha
other irrational ratios.
1063-651X/2001/63~4!/046210~10!/$20.00 63 0462
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The simplest model in which the discussed transition
curs is the one-dimensional circle map

un115un1V2~k/2p!sin 2pun . ~1!

Hereu is the dynamical variable,n is discrete time, andV
and k are parameters. The winding numberw
5 limn→`un /n plays the role of the frequency ratio. Th
variableu is interpreted as a kind of phase~only the frac-
tional part of u is of relevance!, so regimes with rationa
winding numbers are regarded as periodic.

In Fig. 1~a! we present a chart of the parameter pla
(k,V). Regions of different dynamical behavior are show
in gray scale. Domains of synchronization, known as Arn
tongues, correspond to rational winding numbers. The h
zontal linek51 separates two essentially distinct parts of t
parameter space: below this line the map is invertible, ab
this line it is not. Atk,1 quasiperiodic regimes occur be
tween the tongues.

In the parameter plane one can find a curveV5Vv(k) of
constant irrational winding numberw5v5(A521)/2 @Fig.
1~b!#. Just on the border of the invertibility loss this curv
terminates at the point

~kc ,Vc!5~1,0.606 661 063 470 185 . . . !, ~2!

which will be referred to asthe GM critical point ~GM
stands for ‘‘golden mean’’!. Scaling properties intrinsic to
this point were discovered in numerical computations
Shenker @3#. The theoretical foundations were stated
Feigenbaum, Kadanoff, and Shenker@4#, and by Rand, Os-
tlund, Sethna, and Siggia@5,6#. They developed the renor
malization group~RG! approach based on constructing a s
quence of evolution operators—maps describing
dynamics in terms of properly rescaled variables over ti
©2001 The American Physical Society10-1
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NIKOLAI YU. IVANKOV AND SERGEY P. KUZNETSOV PHYSICAL REVIEW E 63 046210
intervals given by the Fibonacci numbers. From the R
analysis the constants were obtained@3–6,28,29# responsible
for scaling in the phase space

a521.288 574 553 954 368 866 . . . ~3!

and in the parameter space

d1522.833 610 655 891 167 799 . . . ,

d25a251.660 424 381 098 700 680 . . . . ~4!

It is commonly believed that a critical point of the sam
kind occurs in nonlinear dissipative systems of different
tures. This assertion is supported by some experimental
numerical studies, including experiments on Rayleig
Bénard convection@9,13,14,17,25#.

As known, the simplest class of continuous time syste
possessing complex dynamics and chaos is represente
three-dimensional flows. Using construction of the Poinc´
section, one can reduce the description of the dynamics
two-dimensional invertible map. In the parameter space
such a system the terminal point of a curve of constant wi
ing number cannot be associated with violation of the inve
ibility. So the question arises of how one can find the criti

FIG. 1. ~a! Parameter plane of the circle map~1!. Regions of
synchronization~Arnold tongues! are shown in gray; winding num
bers are indicated inside the tongues. White regions correspon
quasiperiodicity~below k51), chaos~above k51), or unrecog-
nized long periods.~b! Illustration of the GM critical point defini-
tion: in the parameter plane this is a terminal point of the curve
constant irrational winding number (A521)/2 located at the borde
of invertibility loss. In the diagram~a! the critical point is marked
by a small cross.
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point in this case. Some ways to solve this problem ha
been discussed in the literature@23–25#, but we intend to
present here an alternative approach.

To invent an algorithm for computation of the critica
point we recall a similar problem for the period doublin
transition to chaos. In that case an elegant method is kn
based on so-called eigenvalue matching@30–33#. At the
Feigenbaum critical point an infinite set of unstable perio
orbits is present. Periods are equal to 2m, and cycle eigen-
values ~multipliers! converge to a universal constantmc5
21.601 19 . . . . The value of the control parameter is se
lected to reach equality of the multipliers for two sufficient
long periods, and it yields a good estimate for the critic
point. Alternatively, one can search for the parameter va
at which the multiplier for one period 2m equalsmc . The
largerm is, the more precisely the value of the parameter w
be obtained. An analogous approach was exploited in stu
of the destruction of ‘‘noble’’ Kolmogorov-Arnold-Mose
tori in Hamiltonian dynamics@35–38#. In particular, for the
golden-mean frequency ratio there exists an infinite se
unstable orbits with periods given by Fibonacci numbe
Their eigenvalues are expressed via the so-called resi
which tends to a universal constant.

In the dissipative case no periodic orbits occur at the G
critical point. Nevertheless, as we show in the present pa
a set of orbits with desirable properties does exist in
complex domain of the dynamical variables. Hence, appli
tion of a similar method for computation of the GM critica
point becomes possible. As a basic example, we take a p
lar two-dimensional invertible map, which has been deriv
from realistic physical assumptions—the standard dissipa
map of Zaslavsky@9,25,35#.

Having found accurately the critical point GM for thi
map we will discuss in some detail the intrinsic scaling pro
erties, which are common for all representatives of the u
versality class including the one-dimensional circle m
@3–9,16,19,20,28,29#. In particular, we pay special attentio
to the self-similar arrangement of the picture of Arno
tongues near the GM critical point. To our knowledge,
convincing illustrations of two-dimensional scaling ha
been presented in the literature, even for the circle map.
parently, the reason is a subtlety of the question: as we ar
some special nonlinear coordinate change must be im
mented to define in the parameter plane a coordinate sys
appropriate for demonstration of the scaling property. Wi
out properly chosen local coordinates no perfect corresp
dence of the parameter space arrangement on different s
can be observed~see, e.g.,@34#!.

In Sec. II we present numerical evidence that the cir
map at the GM critical point possesses an infinite seque
of orbits ~cycles! in the complex domain with periods give
by Fibonacci numbers and with Floquet eigenvalues~multi-
pliers! converging to a universal complex constant. In S
III we briefly reproduce the RG analysis for a on
dimensional map and use it to explain the results of the p
vious section. In particular, the value of the universal mu
plier is obtained from the solution of the RG equation.
Sec. IV we formulate a method of precise computation of
critical point. It consists in selecting appropriate values
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COMPLEX PERIODIC ORBITS, RENORMALIZATION . . . PHYSICAL REVIEW E63 046210
control parameters to reach the universal value of the m
plier for a complex orbit of period given by a sufficient
large Fibonacci number. The method is applied to
Zaslavsky map, and the GM critical point is found. In Se
V and VI we discuss and compare the scaling properties
the Zaslavsky map and the circle map at the GM point an
its neighborhood.

II. COMPLEX PERIODIC ORBITS OF THE CIRCLE MAP

Let us suppose that the dynamical variable in the cir
map~1! is complex, although the parametersV andk remain
real. The substitutionun5xn1 iyn and separation of real an
imaginary parts yields

xn115xn1V2~k/2p!cosh 2pynsin 2pxn ,

yn115yn2~k/2p!sinh 2pyncos 2pxn . ~5!

An orbit is regarded as a cycle of periodq if

xn1q5xn1p, yn1q5yn , ~6!

wherep is an integer. In Table I we summarize data fro
numerical calculations revealing a set of unstable comp
cycles with periods given by Fibonacci numbers. Among
points of the periodic orbits for the presentation we ha
selected those that obey a scaling relation: The ratio of
subsequent complex numbers in the left column of the ta
converges fast to a real valuea521.288 57 . . . .

The last column of Table I contains the Floquet eigenv
ues, or multipliers, for the periodic orbits found. The mul
plier is defined as a factor determining evolution of a sm
perturbation over one periodT. For our one-dimensiona
complex map the value ofuT is an analytic function ofu0,
and the multiplier may be evaluated simply as a derivativ

TABLE I. Complex cycles and their multipliers at the GM crit
cal point of the circle map~1!: k51, V50.606 661 063 470 185.

Period u0 m

5 0.11632986510.107284031i 0.74465212.595925i
8 20.09228135420.082307114i 0.74687412.519519i
13 0.07121294110.063688363i 0.74162612.556631i
21 20.05563708120.049219831i 0.74294812.536090i
34 0.04311198310.038153899i 0.74184212.546574i
55 20.03352672120.029566354i 0.74230412.540931i
89 0.02600878510.022934662i 0.74203512.543873i
144 20.02019724620.017789510i 0.74217412.542310i
233 0.01567285310.013803118i 0.74210312.543132i
377 20.01216542020.010710054i 0.74214312.542697i
610 0.00944087610.008310980i 0.74212312.542927i
987 20.00732707820.006449351i 0.74213412.542804i
1597 0.00568619410.005004901i 0.74212812.542873i
2584 20.00441286620.003883963i 0.74213412.542825i
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]uT /]u05]xT /]x01 i ]yT /]x0

5 )
n50

n5T21

@12k cos 2p~xn1 iyn!#. ~7!

From Table I we observe that the multipliers of the cyc
with Fibonacci periods tend to a certain complex valuem1

'0.742112.5428i .
It is worth mentioning that each member of the seque

of unstable cycles given in Table I has a complex conjug
partner. Hence, there exists a sequence of cycles with m
pliers converging to a conjugate constantm25m1* . It may
be conjectured that both these conjugate sets of periodic
bits are infinite.

III. RENORMALIZATION GROUP ANALYSIS

To explain the results of the previous section we emp
the RG technique developed in@4–6,19,20,28,29#. The main
idea consists in considering a set of evolution operators
describe the dynamics at the critical point over increas
time intervals. For the case of the golden-mean wind
number, these time intervals are selected as subsequen
bonacci numbersFm .

Let us introduce a shortened notation for the circle ma

un115 f ~un!, ~8!

and consider the evolution of some initialun over a time
interval given by a Fibonacci numberFm11. As the rational
approximant of the winding number isFm /Fm11, we con-
clude thatun1Fm11

is close toFm . We recall that only the

fractional part ofun is relevant and represent the evolutio
operator overFm11 iterations as

f m~u!5 f Fm11~u!2Fm

5 f „f ~ f „ . . . ~u! . . . …
(Fm11 times)

……2Fm . ~9!

According to the Fibonacci relationFm115Fm1Fm21 we
write

f m11~u!5 f m21„f m~u!…. ~10!

@Note that for any integerp the function f (u) obeys f (u
1p)5 f (u)1p.# Next, following Refs.@4–6#, at each stepm
we implement rescaling of the dynamical variable by t
factor am and rewrite Eq.~10! in terms of the renormalized
evolution operatorsgm(u)[amf m(a2mu):

gm11~u!5a2gm21„a
21gm~a21u!…. ~11!

This expression defines the RG transformation.
If the parameters of the original map correspond to

GM critical point, then the functional sequencegm(u) con-
verges to a definite limit:g(x)5 limm→`gm(x). The limit
function g(u) is the fixed point of the RG transformatio
~10! and, hence, must satisfy the functional equation
Feigenbaum-Kadanoff-Shenker:
0-3
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NIKOLAI YU. IVANKOV AND SERGEY P. KUZNETSOV PHYSICAL REVIEW E 63 046210
g~u!5a2g„a21g~a21u!…. ~12!

This function represents a form of the long-time evoluti
operators in terms of the rescaled dynamical variable. I
convenient to accept normalization ofg(u) to unity at the
origin. Then this function may be found directly from sol
tion of Eq. ~12! @4–6,28,29#. With the help of a finite poly-
nomial approximation forg(u) one can reduce the functiona
equation to a set of algebraic equations for the coefficient
the expansion, and solve them numerically by means of
multidimensional Newton method. We have reproduc
these calculations and find the universal function

g~u!5110.765 184u320.215 464u620.053 469x9

10.032 921u1210.001 231u1520.004 304u18

10.000 668u2110.000 501u2410.000 177u27

20.000 042u3010.000 031u3320.000 004u39
•••

~13!

and the constanta521.288 574 55 . . . in excellent agree-
ment with Refs.@4–6,28,29#. Now we take an additional ste
and suppose that the variableu is complex. Using Eq.~13!
one can check that the universal functiong(u) has the fol-
lowing fixed point:

u15g~u1!,u150.686 628 . . .1 i0.604 309 . . . . ~14!

and the derivative at this point is

m15g8~u1!50.742 130 53 . . .1 i2.542 847 59 . . . .
~15!

We recall that for largem the mapf m(u), which describes
the dynamics of the circle map at the GM critical point ov
Fm11 iterations, is represented by the functiong(u) up to
normalization of the dynamical variable. Hence, each m
f m(u) will have a complex fixed point, and this point corr
sponds to a complex cycle of periodFm11 for the original
map. Starting points for these cycles behave asu}a2m, and
multipliers given by the derivatives off m(u) are equal as-
ymptotically to the derivative of the universal function at t
fixed point. This explains the results of the previous secti
From Table I we see that the empirically obtained multiplie
agree with the value of derivative~15!, and the ratio of start-
ing coordinates for the complex periodic orbits coincid
with the scaling constant~3!.

The coefficients in formula~13! are real; hence, the fixe
point u1 has a complex conjugate partner—the fixed po
u25u1* with the derivativeg8(u2)5m25m1* .

On the basis of the RG analysis we conclude that
existence of a set of unstable cycles, whose periods are g
by Fibonacci numbers and whose multipliers converge to
universal constant, is an attribute of the universality cl
associated with the GM critical point, rather than a prope
of the concrete circle map. This circumstance can be
ploited to search for the critical point in other systems,
cluding invertible two-dimensional maps.
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In the final part of this section we recall the re
sults of analysis of perturbations for the fixed poi
of the Feigenbaum-Kadanoff-Shenker RG equat
@4–6,19,20,28,29#. We search for a solution asgm(u)
5g(u)1«hm(u) and, accounting for terms of the first orde
in «, obtain

hm11~u!5a2g8„a21g~u/a!…hm~u/a!

1ahm21„a
21g~u/a!…. ~16!

The substitutionhm(u)5dmh(u) leads to the eigenproblem

d2h~x!5da2g8„a21g~x/a!…h~x/a!1ah„a21g~x/a!….
~17!

Computations yield two essential eigenvectors with eig
values d1522.833 61 . . . andd25a251.660 42 . . . @see
Eq. ~4!#. The first eigenfunction has a Taylor expansion
the form h1(u)511(hnu3n. In the circle map it corre-
sponds to a perturbation preserving the cubic inflection po
~a shift along the linek51). The second eigenfunctio
h2(u) contains all powers of the argument. This perturbat
appears due to a departure from the critical point along
curve of constant winding number. A general arbitrary sh
of parameters from the GM critical point gives rise to bo
eigenvectors. In this case the evolution operators over t
intervalsFm will behave asymptotically as

gm~x!>g~x!1C1d1
mh1~x!1C2d2

mh2~x!. ~18!

Here the coefficientsC1 andC2 depend on the parameters
the original map and vanish at the critical point.

Suppose we consider the dynamics at some point of
parameter space (k,V), where the coefficients in Eq.~18! are
C1 and C2. If we find another point (k8,V8) at which the
coefficients areC185C1 /d1 , C285C2 /d2, then the evolution
operator, corresponding toFm11 iterations at the new point
coincides with the operator forFm iterations at the old point.
Hence, at both these points the type of dynamics~periodic,
quasiperiodic, chaotic! will be the same. The regimes diffe
only by the characteristic time scale: at the point (k8,V8) it
is larger by the factorFm11 /Fm , which tends tov21 asm
→`. All quantitative characteristics of the two regimes a
expressed one via another by more or less trivial relatio
For instance, the Lyapunov exponents are connected as

L~k8,V8!>vL~k,V!. ~19!

The closer to the critical point, the more precise are the s
ing relations.

IV. GM CRITICAL POINT IN THE STANDARD
DISSIPATIVE MAP OF ZASLAVSKY

In this section we formulate a method for accurate co
putation of parameter values corresponding to the crit
point. As an example, we take a well-known tw
dimensional map—the standard dissipative map
Zaslavsky@9,25,35#. The method we suggest may be appli
0-4
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COMPLEX PERIODIC ORBITS, RENORMALIZATION . . . PHYSICAL REVIEW E63 046210
also for a wide class of other maps and flows possessing
GM critical point.

The dissipative Zaslavsky map has been derived for so
realistic physical systems and reads@9,25,35#

un115un1V2~k/2p!sin 2pun1drn ,

r n115drn2~k/2p!sin 2pun , ~20!

where u and r are dynamical variables, andV, k, d are
parameters. Ford50 the map reduces to the circle map~1!.
So V andk have essentially the same nature as in the ci
map, while the third parameterd is responsible for adding
the second dimension. As in the circle map, the variablu
has the sense of a phase, so only periodic functions ofu may
have a physical meaning.

It can be found that the Jacobi determinant of the ma
constant and equal tod. The map is invertible:un andr n are
expressed uniquely viaun11 and r n11. The Zaslavsky map
may be regarded as a Poincare´ map for some three
dimensional flow.

In Fig. 2 the chart of dynamical regimes in the parame
plane (V,k) is shown for fixedd50.3. Periodic behavior is
observed inside the Arnold tongues. While the parameterk is
not large, quasiperiodicity occurs between the tongues. C
otic regimes take place for largerk, in the upper part of the
diagram. We assume that a GM critical point of the sa
universality class as in the circle map exists in the param
plane. Certainly, it must belong to the curve of const
winding number w5 limn→`un /n5v5(A521)/2. How-
ever, the map is invertible everywhere, and the critica
cannot be associated with violation of the invertibility. T
invent an appropriate algorithm for computation of coor
nates for the critical point we exploit the existence of a se
complex periodic orbits with the properties stated in Secs
and III.

As the first step, let us extend the map into the comp
domain. We assume that both dynamical variables in
~20! are complex,u5x1 iy , r 5u1 iv, while the parameters
k,V,d remain real. Then, instead of Eq.~20!, we write

FIG. 2. Parameter plane of the dissipative Zaslavsky map~19!.
Regions of synchronization~Arnold tongues! are shown in gray;
periods are indicated inside the tongues. White regions corresp
to quasiperiodicity, chaos, or unrecognized long periods. The
critical point found numerically is marked by a small cross.
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xn115xn1V2~k/2p!cosh 2pynsin 2pxn1dun ,

yn115yn2~k/2p!sinh 2pyncos 2pxn1dvn , ~21!

un115dun2~k/2p!cosh 2pynsin 2pxn ,

vn115dvn2~k/2p!sinh 2pyncos 2pxn .

If we have a cycle of periodT starting at the point
(u0 ,r 0), then

uT5u01p, r T5r 0~p real integer!, ~22!

and two complex multipliers may be calculated as eigenv
ues of the Jacobi matrix

S ]uT /]u0 ]uT /]r 0

]r T /]u0 ]r T /]r 0D
5S ]xT /]x01 i ]yT/]x0 ]xT/]u01 i ]yT /]u0

]uT /]x01 i ]vT/]x0 ]uT/]u01 i ]vT /]u0D .

~23!

The determinant of this matrix equalsdT, whered,1. For
largeT the determinant becomes very small in modulus,
one multiplier appears to be approximately zero, and
other is given by the trace of the matrix:

mT>ST5]xT/]x01]uT/]u01 i ~]yT/]x01]vT /]u0!.
~24!

Let us fix d and try to find values ofk andV at which the
map will have an infinite sequence of unstable comp
cycles of periods given by Fibonacci numbers, and with tra
asymptotically equal to the universal constant~15!. These
values ofk andV will give an estimate for coordinates of th

TABLE II. Subsequent approximations for the GM critical poi
in the Zaslavsky map atd50.3 found from the conditionSFm

5m150.742 130 5312.542 847 59i .

Period
of complex

orbit Fm k V

8 0.969272363707 0.610494183322
13 0.987131540725 0.610154623294
21 0.986520082743 0.610155713052
34 0.985390987646 0.610175758867
55 0.984925711397 0.610181199215
89 0.984745232773 0.610183894787
144 0.984693619730 0.610184570378
233 0.984676474491 0.610184812937
377 0.984672128558 0.610184871753
610 0.984670736356 0.610184891090
987 0.984670412056 0.610184895527
1597 0.984670306523 0.610184896984
2584 0.984670284034 0.610184897293

nd
0-5
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NIKOLAI YU. IVANKOV AND SERGEY P. KUZNETSOV PHYSICAL REVIEW E 63 046210
GM critical point: the larger the period, the more precise
the estimate. For a given Fibonacci numberFm we have to
solve numerically the following set of six equations:

xFm
~x0 ,y0 ,u0 ,v0 ,k,V!2Fm215x0 ,

yFm
~x0 ,y0 ,u0 ,v0 ,k,V!5y0 ,

uFm
~x0 ,y0 ,u0 ,v0 ,k,V!5u0 ,

~25!
vFm

~x0 ,y0 ,u0 ,v0 ,k,V!5v0 ,

~]xFm
/]x01]uFm

/]u0!5Rem1 ,

~]yFm
/]x01]vFm

/]u0!5Im m1

to find six unknownsk, V, x0 , y0 , u0 , v0. This may be done
by means of the multidimensional Newton method. The c
cial condition of success is to have an appropriate ini
approximation for the solution. For cycles of moderate pe
ods we can start fromd50, with the known data for the
circle map, and then trace the solution for gradually incre
ing d up to a desirable value. For larger periodsFm another
hint is possible: we can use data for previous periods
guess an initial approximation by means of scaling relatio
see the discussion in Sec. V. The results of computations

TABLE III. Coordinates of GM critical point in dependence o
the parameterd in the Zaslavsky map.

d kc Vc

0.0 1.00000000000 0.606661063470
0.1 0.99349985654 0.608054206127
0.2 0.98856245192 0.609209827978
0.3 0.98467027409 0.610184897429
0.4 0.98149556207 0.611022944250
0.5 0.97883777906 0.611753902740
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one particular valued50.3 are summarized in Table II. Th
parameter values clearly demonstrate convergence to a
nite limit, which is the GM critical point for the Zaslavsk
map. To find this point with high precision we have pr
duced computations using 60-digit arithmetic and Fibona
numbers such as 463 68 and 750 25. This yields

kc50.984 670 284 088 . . . ,

Vc50.610 184 897 296 4. . . . ~26!

In Fig. 2 this point is marked by a small cross.
In three-dimensional parameter space (V,k,d) there ex-

ists a curve consisting of the GM critical points. In Table
we present their coordinates for different values ofd. Note
that ford50.5 our data are in excellent agreement with tho
of Ketoja @25#.

V. SCALING PROPERTIES OF DYNAMICS AT
THE GM CRITICAL POINT

In Table IV we present numerical data for the compl
orbits of periods given by the Fibonacci numbersFm from 8
to 1597 at the GM critical point. Observe that all the mul
pliers are approximately equal to the universal constantm1 .
It is possible to select one point at each orbit to ensure
the ratios (um212um22)/(um2um21) and (r m21
2r m22)/(r m2r m21) converge to the universal constanta
521.288 57 . . . ~see the second and third columns of Tab
IV !. These points tend to a definite limit as

uFm
>uc1K1a2m, r Fm

>r c1K2a2m, ~27!

whereK1 andK2 are some complex constants and

uc520.001 066 68 . . . , r c520.037 163 04 . . .
~28!

are found to be real. We will refer to the point (uc ,r c) asthe
scaling center. For the Zaslavsky map it plays the same ro
as the origin~inflection point! in the circle map.
TABLE IV. Starting points of complex cycles and their multipliers for the Zaslavsky map~19! at k
50.984 670 284 088,V50.610 184 897 296 5,d50.3.

Period u0 r m

8 20.08591814920.075798541i 20.07878359320.034202902i 0.74944412.553330i
13 0.06513471710.059523013i 20.00465993510.029736586i 0.73774912.550092i
21 20.05255988020.045420212i 20.06220678220.021206600i 0.73858512.542746i
34 0.03897702410.035560632i 20.01761670110.017614769i 0.73967412.543508i
55 20.03214740620.027340455i 20.05225032420.012991441i 0.74086512.542425i
89 0.02307799710.021339526i 20.02540780410.010498662i 0.74145912.542905i
144 20.01980018620.016472154i 20.04625442920.007900734i 0.74182212.542700i
233 0.01347938810.012829262i 20.03008964110.006281747i 0.74197812.542858i
377 20.01235271520.009925091i 20.04264088920.004785266i 0.74206512.542807i
610 0.00769450010.007719485i 20.03290526610.003768004i 0.74209912.542852i
987 20.00786473020.005979666i 20.04046316120.002891589i 0.74211712.542837i
1597 0.00420984510.004646827i 20.03459956310.002263721i 0.74212412.542849i
2584 20.00516112020.003602216i 20.03915097520.001744938i 0.74212812.542844i
0-6
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To observe scaling in the dynamics of the Zaslavsky m
in the real domain let us consider an orbit starting at
scaling center. In Fig. 3 the distance of the orbit from t
initial point is plotted on a double logarithmic scale. Obser
that the orbit returns closer and closer to the scaling ce
after the periods given by Fibonacci numbersFm , and the
distances behave asdm}uau2m.

As we mentioned, only periodic functions ofu can have a
physical meaning; such an appropriate variable is, for
ample,s5sin(2pu). In Fig. 4 we show the attractor of th
Zaslavsky map at the GM critical point in the plane (s,r ).
The cross indicates the location of the scaling center.
though this critical attractor itself looks rather like a cro
section of a smooth torus, it has, in fact, a fractal nat
because of the distribution of invariant measure. To mak
visible, we use in Fig. 4 gray scale coding, which represe
the relative probabilities of visiting different parts of the a
tractor.

Figure 5 illustrates self-similarity intrinsic to the fract
distribution of the invariant measure on the critical attract
The upper diagram is a plot of the cumulative distributi
function in dependence on the phase variableu. Let us take a
fragment of the picture near the scaling center and consid
at several steps of subsequent magnification~the bottom row
in Fig. 5!. Each time we redefine the scale by a factora5

FIG. 3. Illustration of the scaling property for the orbit of th
Zaslavsky map launched from the scaling center: dependence o
distance from the start point on the number of iterations. Dou
logarithmic scale is used.

FIG. 4. Attractor of Zaslavsky map at the GM critical poi
drawn on the phase plane (sin 2pu,r). Gray scales code relativ
probabilities of visiting corresponding parts of the attractor. N
that the attractor itself looks like a cross section of a smooth to
Its fractal properties are reflected only in the distribution of gr
tones, representing structure of the invariant measure. The c
indicates location of the scaling center.
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21.288 57 . . . along the horizontal axis, and by a factorb
52(A511)/2 along the vertical axis.~The minus sign
means that the orientation of the axes is reversed at e
subsequent step of the rescaling.! Observe that the picture
reproduce each other with good precision.

To reveal fractal properties of the invariant measure o
can exploit the singularity spectrum introduced by Hals
et al. @39#. We have considered a sequence (un ,r n) gener-
ated by the Zaslavsky map starting from the scaling cen
up to the iteration numbern5Fm1252584 and define the
diameters of covering elements asl i5ADu i

21Dr i
2, where

Du i5(u i2u i 1Fm11
)/2p(mod 1), Dr i5r i2r i 1Fm11

, and

their probabilities aspi5p51/Fm for i 51 . . . ,Fm . Next,
we construct the sums

Gqt
(m)5(

i 51

Fm

pq/ l i
t5Fm

2q(
i 51

Fm

l i
2t , ~29!

consider their dependence onm, and require them neither to
vanish nor to go to infinity. This yields

q~t!5 lim
m→`

logGqt
(m)

logFm
'

logGqt
(m)

logFm
~30!

for sufficiently largem. Then we definea5(dq/dt)21 and
f 5aq2t, and draw the parametric plot off (a).

In Fig. 6 the singularity spectrum for the circle map at t
GM critical point is shown by the solid curve, and the do
correspond to the singularity spectrum of the Zaslavsky m
The excellent coincidence of the spectra gives evidence
the critical points in both maps relate to the same class
universality. Generalized dimensionsDq may be calculated

the
e

s.

ss

FIG. 5. Cumulative distribution function for invariant measu
on the attractor at the GM critical point in the Zaslavsky map a
illustration of its scaling property: a fragment of the whole pictu
is shown under subsequent magnification by factorsa5

21.288 57 . . . andb52(A511)/2 along the horizontal and ver
tical axes, respectively.
0-7
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NIKOLAI YU. IVANKOV AND SERGEY P. KUZNETSOV PHYSICAL REVIEW E 63 046210
from Dq(t)5t/@q(t)21#. The Hausdorff dimension of the
critical attractor is equal to 1, although the information a
correlation dimensions have nontrivial valuesD1>0.922 and
Dq>0.866, the same for the circle map and the Zaslav
map.

Let us turn to discussion of the Fourier spectrum gen
ated by the Zaslavsky map at the GM critical point. Sin
only periodic functions ofu have physical meaning, w
again introduce a variablesn5sin 2pun5sin 2pxncosh 2pyn
1i cos 2pxnsinh 2pyn , and will be interested in its Fourie
expansion. We can arrive at the Fourier spectrum at the c
cal point by considering subsequent complex periodic or
of period N5Fm for larger and largerm. The spectral am-
plitudes are defined in the standard manner as

S~ f !5S~m/N!5ucmu2,

cm5
1

N (
n50

N

snexp@2~2p imn!/N#, ~31!

where f 5m/N is the frequency of themth component. In
Fig. 7~a! we present the spectrum obtained numerically at
GM critical point of the Zaslavsky map in the coordinat
used usually in experimental studies: the logarithm of
amplitude versus frequency. To show the self-similar str
ture of the spectrum, we follow Refs.@3,6# and plot the spec-
trum on a double logarithmic scale. As observed in Fig. 7~b!,
the same arrangement of spectral peaks is reproduced
proper periodicity at intervals along the axis of logarithm
frequency.

VI. SCALING PROPERTIES OF THE PARAMETER
PLANE IN THE VICINITY OF THE GM CRITICAL POINT

In this section we intend to demonstrate two-dimensio
scaling of the parameter space near the GM critical po
which follows from the considerations in the last part of S
III. For this aim we need to define an appropriate local c
ordinate system~scaling coordinates! in such a way that si-
multaneous scale change along the coordinate axes by
tors d1 and d2 would ensure realization of similar regime
As we do not know explicit expressions for the coefficien
in Eq. ~18! via parameters of the model maps~1! and ~20!,
the problem must be solved numerically, with sufficient a
curacy.

FIG. 6. Plot of the singularity spectrum for the attractor at t
GM critical point: solid line corresponds to circle map, squares
the dissipative map of Zaslavsky.
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Let us place the origin of the new coordinate syste
(c1 ,c2) at the GM critical point. Arbitrarily, we direct the
first coordinate axisc1 along the linek5const. In contrast,
the second coordinate curve, along which the value ofc2 is
measured, must be defined carefully to exclude a contr
tion of the senior eigenvector for any shift from the critic
point along this curve~Fig. 8!. It appears that it is just a
curve of constant~golden mean! winding number. One could

o

FIG. 7. Fourier spectra for time series generated by Zaslav
map at the GM critical point~approximated by the cycle of perio
F152584):~a! logarithmic plot for amplitude versus frequency;~b!
double logarithmic plot; exponentk is fitted empirically.

FIG. 8. Definition of scaling coordinates in the neighborhood
the GM critical point.
0-8
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FIG. 9. Chart of Lyapunov exponent in the parameter plane of the circle map with fragments shown separately in scaling co
under subsequent magnification by factorsd1 andd2 along the coordinate axes. Gray scales code values of the Lyapunov exponentL from
2` ~light gray! to 20 ~dark gray!; zero and positive values are designated as white. For the pictures in scaling coordinates the cod
is redefined in accordance with Eq.~19! at each subsequent step of magnification.
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try to represent this curve by means of Taylor expans
Dk5c2 , DV5Ac21Bc2

21Cc2
31•••. However, if we take

into account the concrete relation between scaling factord1
andd2, this expression may be cut. Indeed, suppose we c
sider a set of the parameter plane pictures under the s
changec1}d1

2m and c2}d2
2m for subsequentm. If we ne-

glect the Taylor coefficient atc2
j the deflection from the true

coordinate curve will be of orderd2
2 jm , which yields a con-

tribution to the senior eigenvector of orderd2
2 jmd1

j . As one
can see from Eq.~4!, the eigenvalues for the GM critica
point satisfyd2,ud1u, d2

2,ud1u, but d2
3.ud1u. Hence, it is

necessary to account for only linear and quadratic term
the Taylor expansion. So we may approximate the curve
constant winding number by a parabola and define sca
coordinates near the GM critical point by the ansatz

V5Vc1c11Ac21Bc2
2 , k5kc1c2 , ~32!

which is appropriate for both the circle map and t
Zaslavsky map. As we have found numerically, for the cir
map

A520.017 49, B520.001 48, ~33!

and for the Zaslavsky map atd50.3

A520.013 796, B520.004 543. ~34!

In Figs. 9 and 10 we demonstrate scaling of the param
plane topography for both maps near their GM critic
points. Gray tones code values of the Lyapunov exponen
both cases the first plot shows a part of the parameter p
in ‘‘natural’’ coordinates (k,V). We then select a fragmen
04621
n
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ale

in
of
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of the picture near the GM critical point with the borde
going along the coordinate curvesc15const andc25const,
and redraw this fragment separately in scaling coordina
Then the smaller fragment of the picture is magnified
factorsd1 andd2 along the horizontal and vertical axes, r
spectively, and the gray scale coding is redefined in acc
dance with Eq.~18!. This procedure of rescaling may b
repeated again and again. Observe the excellent corres
dence of the structures on different scales. The deeper
level of resolution, the better the correspondence between
pictures.

VII. CONCLUSION

The results of this paper should be regarded in the con
of research directions that deal with the study and classifi
tion of critical behavior at the border of chaos. We me
situations associated with various classes of quantitative
versality, allowing description in terms of the renormaliz
tion group approach@33#. When some different type of criti-
cality is discovered in a simple artificial model, the questi
of the possibility of its observation in realistic dynamic
systems immediately arises. Examples of such syst
should be presented with a convincing demonstration of
corresponding dynamical properties in numerics and exp
ments.

Although the critical situation associated with destructi
of the golden-mean two-frequency quasiperiodicity and
GM critical point has been known for about 20 years, t
details are not complete yet. In this article we have found
interesting property of the critical dynamics associated w
the GM point. That is, an infinite set of Fibonacci-perio
unstable orbits occurs in the complex domain of dynami
g
unov
inates
FIG. 10. Chart of Lyapunov exponent in the parameter plane of the Zaslavsky map ford50.3 with fragments shown separately in scalin
coordinates under subsequent magnification by factorsd1 and d2 along the coordinate axes. Gray scales code values of the Lyap
exponentL from 2` ~light gray! to 20 ~dark gray!; zero and positive values are designated as white. For the pictures in scaling coord
the coding rule is redefined in accordance with Eq.~19! at each subsequent step of magnification.
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variables, and Floquet eigenvalues~multipliers! of these
cycles converge fast to a universal complex constant. T
result follows also from the RG analysis; hence, it has to
regarded as an attribute of the whole universality class,
of some particular model. The stated property may be us
for accurate numerical estimates of the critical point locat
in the parameter plane for dissipative systems defined
lytically by maps or differential equations. We have pr
sented the corresponding data relating to the standard d
pative map of Zaslavsky.

One more essential contribution of the present work
see in the accurate analysis of two-dimensional scaling of
configuration of Arnold tongues near the GM critical poin
That is, to observe self-similarity of this two-dimension
picture it is necessary to use a special curvilinear coordin
system in the parameter plane. ‘‘Natural’’ parameters of
original map are connected with the new coordinates vi
parameter change, in which linear and quadratic terms m
be included.

A more or less straightforward perspective of further stu
ies is the possibility of application of the suggested appro
to other systems manifesting GM critical behavior, and
elaboration of analogous analysis for other cases of des
a

e

D

J

A
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tion of two-frequency quasiperiodicity, say, for frequen
ratios associated with the silver mean and other irration
As a matter of principle, we stress the fact that analysis
dynamics in the complex domain~in our case, the study o
complex periodic orbits! leads to useful conclusions abo
dynamics in the real domain: It gives a foundation for co
structing algorithms and sheds light on properties of univ
sality and scaling. Similar approaches based on comple
cation of the dynamical systems under study may
productive in other problems of nonlinear dynamics, in p
ticular, for deeper understanding of the dynamics betw
order and chaos.
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