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Mandelbrot set in coupled logistic maps and in an electronic experiment
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We suggest an approach to constructing physical systems with dynamical characteristics of the complex
analytic iterative maps. The idea follows from a simple notion that the complex quadratic map by a variable
change may be transformed into a set of two identical real one-dimensional quadratic maps with a particular
coupling. Hence, dynamical behavior of similar nature may occur in coupled dissipative nonlinear systems,
which relate to the Feigenbaum universality class. To substantiate the feasibility of this concept, we consider
an electronic system, which exhibits dynamical phenomena intrinsic to complex analytic maps. Experimental
results are presented, providing the Mandelbrot set in the parameter plane of this physical system.
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One of the rich and fascinating subdisciplines in nonlin
dynamics is the theory of iterative complex analytic ma
pings. A well-known example is the quadratic map

zn115l2zn
2 , ~1!

where the dynamical variablez and the parameterl are both
complex. The set of parameter values defined by the co
tion that the iterations launched from the critical pointz50
do not diverge to infinity is the celebrated Mandelbrot s
perhaps, the most well-known example of a fractal@1,2#.
Among other interesting objects in the field of complex an
lytic dynamics one can mention Julia sets—fractal ba
boundaries of the attractor at infinity on thez plane @1,2#,
period tripling and other unusual bifurcation phenome
@3–5#, Siegel discs—domains onz plane, filled by closed
invariant curves, which appear near fixed points at the m
ment of stability loss via irrational eigenvalues@6–8#. Al-
though some nontrivial physical applications of compl
maps are known~for problems like renormalization grou
approach in phase-transition theory and percolation the
@9,10#!, it would be interesting to find examples of nonline
systems manifesting one or more of the above mentio
phenomena in actual dynamical behavior.

In fact, complex analytic functions represent a very s
cial and restricted class of maps. Indeed, the real and im
nary parts off (z) must satisfy the Cauchy-Riemann equ
tions. If this is not the case, the dynamics become drastic
different @11–13#. This circumstance forces one to ask t
principal question: Do the phenomena demonstrated by c
plex analytic maps have any concern to dynamical beha
of physical systems? Recently this problem was posed
discussed by Beck@14#. This author has considered motio
of a particle in a double-well potential in a time-depende
magnetic field, and proved that under certain assumptio
complex analytic map may describe the dynamics of the p
ticle.

The aim of the present paper is to suggest some gen
approach to constructing physical systems with propertie
dynamics specific to the complex analytic maps.
1063-651X/2001/64~5!/055201~4!/$20.00 64 0552
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Let us start from the complex quadratic map~1! and, first,
separate the real and imaginary parts. Designatingz5x1 iy
andl5l81 il9, we obtain

xn115l82xn
21yn

2 , yn115l922xnyn . ~2!

The variable and parameter change

j5x1by, h5x2by, ~3!

l15l81bl9, l25l82bl9, ~4!

wherebÞ0 is an arbitrary constant, transforms the Eqs.~2!
into a set of two coupled real logistic maps:

jn115l12jn
21«~jn2hn!2,

hn115l22hn
21«~jn2hn!2. ~5!

Here «5(11b2)/4b2 plays the role of a coupling param
eter. It is worth noting that coupling in these equations is
a very special kind: It may be interpreted as an equal sim
taneous shift of control parameters in both maps at each
of iterations, which is proportional to the square of the d
namical variable difference.

It is easy to see that for any selection ofb the coupling
parameter is positive, and exceeds 1/4. Nevertheless, we
consider the coupled maps~5! for arbitrary values of«. To
motivate this, we turn to the generalized complex numb
@15–17#. For pairs of real numbers (x,y) written asx1 iy , it
is possible to define different consistent rules of arithmeti
operations settingi 25a1 ib, wherea and b are some real
constants. The casea521, b50, or i 2521, gives rise to
usual complex numbers,a51, b50, i 251—to the so-
called perplex numbers, anda5b50, i 250—to dual num-
bers. Any other selection ofa andb appears to be isomorphi
to one of these three cases, which are known as ellip
hyperbolic, and parabolic number systems, respectively.

In the case of perplex numbers instead of Eqs.~2!, we
havexn115l82xn

22yn
2 , yn115l922xnyn . Then the vari-

able change~3! and ~4! yields Eq. ~5! with «5(b2

21)/4b2. The coupling parameter can take either positive
negative values satisfying«,1/4. ~In fact, by an appropriate
©2001 The American Physical Society01-1
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FIG. 1. Charts of the param
eter plane for the coupled map
~5! in dependence on the couplin
parameter:~a! «50.5, ~b! «50.3,
~c! «50.25, ~d! «50.1. Diver-
gence is marked by white, aper
odic behavior by black, and as
ymptotically periodic dynamics
by gray; periods are shown by re
spective numbers.

FIG. 2. Schematic representation of the electronic device corresponding to the coupled maps~5!. Dashed frames show the sample-ho
cells.K11, K12, K21, andK22 are the electronic switches controlled by sequences of the rectangular pulses.A11, A12, A21, A22, D, E, L1 ,
L2 , H1, andH2 are the operational amplifiers,N1 , N2, andN12 are the multipliers.
055201-2
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variable change, this case can be reduced to two uncou
real maps.! For dual numbersxn115l82xn

2 , yn115l9
22xnyn . By means of Eqs.~3! and ~4!, we arrive at the
coupled maps~5! with «51/4—the same value of th
coupling parameter for anyb.

Diagrams in Fig. 1 are charts of the parameter pla
(l1 ,l2) for the coupled maps~5! for several values of the
coupling parameter. To obtain them we produce a large n
ber of iterations starting from the originj5h50 at each
pixel of some area on the parameter plane and analyze
asymptotic behavior of the iterations. Divergence is mark
by white, aperiodic behavior by black, and asymptotica
periodic dynamics by gray; respective numbers designate
periods. At«50.5 we observe exactly the Mandelbrot s
~rotated by 45° in comparison with its usual depiction!. For
0.25,«,1` this set continues to exist, but as a distort
version of the standard picture. At«50.25 the set corre-
sponding to the confined dynamics turns into a number
strips. For«,0.25 it takes the form of rhombuslike struc
tures~at «50 this is a square!. Similar metamorphoses from
the Mandelbrot set to the rhombuslike object was noted
lier in Ref. @17# for the quadratic map~1! considered for the
generalized complex numbers.

It is known that a single real logistic map represents
universality class, which is associated with the perio
doubling bifurcation cascade and includes many dissipa
nonlinear systems~forced nonlinear oscillators, Ro¨ssler and
Lorenz equations, etc.! @19#. It may be thought that taking
two copies of a system, relating to this universality class,
maintaining the appropriate type of coupling, one can
range the dynamical behavior characteristic to the comp
analytic maps.~It is supposed that the control parameters
both the subsystems allow an independent regulation.!

To illustrate the feasibility of this approach we ha
elaborated a real electronic system, which reproduces
dynamics of the coupled logistic maps~5!.

We start with a specialized analog device suggested
Ref. @18# to study the dynamics of nonlinear systems rep
sented by iterative mappings, in particular, by the logis
map. Our system~see Fig. 2! contains two pairs of the
sample-hold cells~marked by dotted frames and figures 1
12, 21, 22 on the diagram!; one pair represents a single re
quadratic map. Each of these cells consists of an an
switch and a capacitor. In the regime of picking a sample,
capacitor is linked to the signal source via the switch, a
accepts a charge up to a definite voltage. At some mom
the switch breaks, and then the voltage on the capacito
mains constant—this is the regime of holding or storage. T
voltage from the capacitor governs the operational ampli
of large input and low output resistance, so the charge of
capacitor remains practically constant. The used regime
the operational amplifier ensures equality of the output v
age to the input one. A set of two sample-hold cells is g
erned by two sequences of nonoverlapping rectang
pulses: the switchesK11 andK21 are opened, whileK12 and
K22 are closed, and vice versa. MultipliersN1 andN2 ensure
quadratic nonlinearity to obtain squared values of the v
ages corresponding tojn

2 ,hn
2 . Output of the operational am

plifier D is the difference signal voltage. It is squared by t
05520
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multiplier N12 to produce the signal (jn2hn)2, then multi-
plied by« and added to the control voltages corresponding
the parametersl1 and l2 by means of the operational am
plifiers L1 and L2. The presence of three variable resisto
R1

; ,R2
; ,R12

; gives a possibility to regulate parametersl1 ,
l2, and«, respectively.

Using an oscilloscope in the experiment, we could dist
guish either dynamics taking place in a restricted domain
the voltages, or the voltages jump to some distant val
~analog of divergence in the mathematical model!. For peri-
odic regimes the periods could be easily determined~in units
of the period of pulses, which control the switches! from the
picture on the oscilloscope screen.

Figure 3 presents two examples of the topography of
plane of two parameters, namely, of voltages regulated
the variable resistorsR1

; andR2
; . The values of the coupling

constant are chosen to be«50.1 and«50.5, respectively.
The first diagram demonstrates a rhombuslike structu

FIG. 3. Configuration of the set corresponding to dynamics i
restricted domain in the experiment with the electronic circuit. T
chart represents the plane of voltages (U1 ,U2) with U1.5l1 ,
U2.5l2 controlled by variable resistorsR1

; andR2
; . The coupling

parameter values are«50.1 ~a! and «50.5 ~b!. The hatching on
diagram~a! marks the domains of complex behavior.
1-3
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similar to that in Fig. 1~d!. Some peculiarities of the exper
mental plot distinct from the computer model may be e
plained by inevitable deflections from perfect quadratic n
linearities at the edges of the working interval of voltage

The second diagram for larger coupling shows a form
tion remarkably similar to the Mandelbrot set. Although
the experiment it was not possible to resolve extremely
details of the structure, the location of all main leaves of
‘‘cactus’’ are in excellent agreement with the computer ge
erated picture.

Experimental measurements at different values of c
pling confirm that the set on the parameter plane (U1 ,U2)
corresponding to the confined dynamics evolve in acc
dance with the results of numerical computations for
coupled maps~5!.

It is worth emphasizing that what we deal with is a re
physical object, effected by such factors as noise and tec
cal fluctuations of voltages. The elements are not perfe
identical, the nonlinear function is not perfectlyx2, and so
forth. A substantial circumstance is that all these factors
not destroy the phenomena of complex analytic dynam
which we observe.
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Perhaps an electronic system could be built also to rea
in a straightforward way the dynamics of real and imagina
parts of the complex variable governed by the map~1!. How-
ever, our approach seems potentially more interesting
cause we state a direction for further search for dynam
systems manifesting behavior similar to that of the comp
iterative maps.

As explained, the quadratic map used as a basic elem
in our construction, must be regarded as a representativ
the wide universality class, which includes many realis
physical systems and their mathematical models~associated
with the period-doubling bifurcation cascade! @19#. Hence, in
the case of a properly arranged coupling between two per
doubling elements of any nature, one may expect the wh
system to demonstrate the phenomena of complex ana
dynamics.
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