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Mandelbrot set in coupled logistic maps and in an electronic experiment
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We suggest an approach to constructing physical systems with dynamical characteristics of the complex
analytic iterative maps. The idea follows from a simple notion that the complex quadratic map by a variable
change may be transformed into a set of two identical real one-dimensional quadratic maps with a particular
coupling. Hence, dynamical behavior of similar nature may occur in coupled dissipative nonlinear systems,
which relate to the Feigenbaum universality class. To substantiate the feasibility of this concept, we consider
an electronic system, which exhibits dynamical phenomena intrinsic to complex analytic maps. Experimental
results are presented, providing the Mandelbrot set in the parameter plane of this physical system.
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One of the rich and fascinating subdisciplines in nonlinear Let us start from the complex quadratic m@p and, first,
dynamics is the theory of iterative complex analytic map-separate the real and imaginary parts. Designating+iy
pings. A well-known example is the quadratic map and\=\'+i\", we obtain

Xn+1:)\,_xﬁ+y§! Ynr1=N"—2X Yy (2

Zn1=N—722, 1 ;
n+1 n @ The variable and parameter change

=x+gy, =x—pBy, 3
where the dynamical variableand the parameter are both ¢ Y. py )
complex. The set of parameter values defined by the condi- A=A +BN", A=\ =B\, (4
tion that the iterations launched from the critical paist 0
do not diverge to infinity is the celebrated Mandelbrot setwhere8+0 is an arbitrary constant, transforms the E@3.

perhaps, the most well-known example of a fradthl2]. into a set of two coupled real logistic maps:

Among other interesting objects in the field of complex ana-

lytic dynamics one can mention Julia sets—fractal basin €nr1=N1—Eate(&n— ),

boundaries of the attractor at infinity on tkeplane[1,2],

period tripling and other unusual bifurcation phenomena Me1=No— ate(€n— )% 5

[3-5], Siegel discs—domains om plane, filled by closed ) ) )
invariant curves, which appear near fixed points at the motiere & =(1+3%)/45 plays the role of a coupling param-
ment of stability loss via irrational eigenvalugg—g). Al-  eter. Itis wqrth noting that couplmg in these equations is of
though some nontrivial physical applications of complex@ Very special kind: It may be interpreted as an equal simul-
maps are knowr(for problems like renormalization group @neous shift of (_:ont_rol parameters in both maps at each step
approach in phase-transition theory and percolation theor§f itérations, which is proportional to the square of the dy-
[9,10)), it would be interesting to find examples of nonlinear Namical variable difference. _ _
systems manifesting one or more of the above mentioned It iS €asy to see that for any selection @fthe coupling
phenomena in actual dynamical behavior. parameter is positive, and exceeds 1/4. Nevertheless, we may
In fact, complex analytic functions represent a very speconsider the coupled mags) for arbitrary values ot. To
cial and restricted class of maps. Indeed, the real and imagfrotivate this, we turn to the generalized complex numbers
nary parts off(z) must satisfy the Cauchy-Riemann equa-[15—17. For pairs of real numbers(y) written asx+iy, it
tions. If this is not the case, the dynamics become drasticallj§ Possible to define different consistent rules of arithmetical
different [11-13. This circumstance forces one to ask theOperations setting’=a+ib, wherea andb are some real
principal question: Do the phenomena demonstrated by confonstants. The case=—1, b=0, ori®= —1, gives rise to
plex analytic maps have any concern to dynamical behavio¥sual complex numbersa=1, b=0, i*=1—to the so-
of physical systems? Recently this problem was posed angglled perplex numbers, ar=b=0, i*=0—to dual num-
discussed by Beckl4]. This author has considered motion bers. Any other selection afandb appears to be isomorphic
of a particle in a double-well potential in a time-dependentto one of these three cases, which are known as elliptic,
magnetic field, and proved that under certain assumptions Ryperbolic, and parabolic number systems, respectively.
complex analytic map may describe the dynamics of the par- In the case of perplex numbers instead of E@3, we
ticle. havex,,1=\"—x2—y2, Yo+ 1=\"—2X,yn. Then the vari-
The aim of the present paper is to suggest some generable change(3) and (4) yields Egq. (5) with e=(3?
approach to constructing physical systems with properties of 1)/482. The coupling parameter can take either positive or
dynamics specific to the complex analytic maps. negative values satisfying<1/4.(In fact, by an appropriate
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FIG. 1. Charts of the param-
eter plane for the coupled maps
(a) ©) (5) in dependence on the coupling
-20 20 " 25 -2.0 20 A 25 parameter{a) ¢=0.5, (b) £=0.3,

(c) €=0.25, (d) £=0.1. Diver-
gence is marked by white, aperi-
odic behavior by black, and as-
ymptotically periodic dynamics
by gray; periods are shown by re-
spective numbers.
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FIG. 2. Schematic representation of the electronic device corresponding to the coupletbmBeshed frames show the sample-hold
cells.K;1, Ki2, Ky, andK,, are the electronic switches controlled by sequences of the rectangular pulseAs,, Asq, Ay, D, E, Ly,
L,, H4, andH, are the operational amplifierdl;, N,, andN,, are the multipliers.
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variable change, this case can be reduced to two uncoupled  14.0

real maps. For dual numbersx,,;=\'—x2, Y 1=\"
—2X,¥Yn- By means of Eqgs(3) and (4), we arrive at the // ?/
coupled maps(5) with £=1/4—the same value of the / ///////
coupling parameter for ang. ARAELLL L ////
Diagrams in Fig. 1 are charts of the parameter plane /
(N1,\,) for the coupled map$5) for several values of the € 1 2 : %
coupling parameter. To obtain them we produce a large num- o 3 o /
ber of iterations starting from the origii=7=0 at each P //
pixel of some area on the parameter plane and analyze the s 5 .
asymptotic behavior of the iterations. Divergence is marked - 1 e : ‘./
by white, aperiodic behavior by black, and asymptotically L
periodic dynamics by gray; respective numbers designate the - e &0 /
periods. Ate=0.5 we observe exactly the Mandelbrot set BiRaaa.. ! 74
(rotated by 45° in comparison with its usual depicjioFor 40 @
0.25< e <+ this set continues to exist, but as a distorted -4.0 U, (V) 14.0
version of the standard picture. At=0.25 the set corre-
sponding to the confined dynamics turns into a number of 9.0 8—
strips. Fore<<0.25 it takes the form of rhombuslike struc- S
tures(at e =0 this is a squane Similar metamorphoses from /5 i e
the Mandelbrot set to the rhombuslike object was noted ear- . % ) 2 R
lier in Ref.[17] for the quadratic mayl) considered for the :'3 g . 3 |
generalized complex numbers. o
It is known that a single real logistic map represents a € 4\ Vi -
universality class, which is associated with the period- A% E 5
doubling bifurcation cascade and includes many dissipative = 1 1
nonlinear systeméforced nonlinear oscillators, Reler and 3 < 3
Lorenz equations, etc[19]. It may be thought that taking 5/ S
two copies of a system, relating to this universality class, and 1
maintaining the appropriate type of coupling, one can ar- S 3:
range the dynamical behavior characteristic to the complex s & — 3
analytic maps(It is supposed that the control parameters for (b)
both the subsystems allow an independent regulation. '6-06 0 0, 9.0
. T . -0. 1 .
To illustrate the feasibility of this approach we have

elaborated a real electronic system, which reproduces the g 3. configuration of the set corresponding to dynamics in a
dynamics of the coupled logistic maffs). restricted domain in the experiment with the electronic circuit. The
We start with a specialized analog device suggested iBhart represents the plane of voltagds, (U,) with U;~5\,,
Ref.[18] to study the dynamics of nonlinear systems repre,~5\, controlled by variable resistoR;” andR; . The coupling
sented by iterative mappings, in particular, by the logisticparameter values are=0.1 (a) and £=0.5 (b). The hatching on
map. Our system(see Fig. 2 contains two pairs of the diagram(a) marks the domains of complex behavior.
sample-hold cell§marked by dotted frames and figures 11,
12, 21, 22 on the diagramone pair represents a single real multiplier Ny, to produce the signalé,— »,)%, then multi-
quadratic map. Each of these cells consists of an analoglied by and added to the control voltages corresponding to
switch and a capacitor. In the regime of picking a sample, théhe parameters; and\, by means of the operational am-
capacitor is linked to the signal source via the switch, anddlifiers L, andL,. The presence of three variable resistors
accepts a charge up to a definite voltage. At some momem; ,R, ,R;, gives a possibility to regulate parameters,
the switch breaks, and then the voltage on the capacitor rex,, ande, respectively.
mains constant—this is the regime of holding or storage. The Using an oscilloscope in the experiment, we could distin-
voltage from the capacitor governs the operational amplifieguish either dynamics taking place in a restricted domain of
of large input and low output resistance, so the charge of théhe voltages, or the voltages jump to some distant values
capacitor remains practically constant. The used regime ofanalog of divergence in the mathematical m@debr peri-
the operational amplifier ensures equality of the output volt-odic regimes the periods could be easily determitedinits
age to the input one. A set of two sample-hold cells is gov-of the period of pulses, which control the switché&®m the
erned by two sequences of nonoverlapping rectangulgpicture on the oscilloscope screen.
pulses: the switchel,, andK,, are opened, whil&, and Figure 3 presents two examples of the topography of the
Ko, are closed, and vice versa. Multiplies andN, ensure  plane of two parameters, namely, of voltages regulated by
quadratic nonlinearity to obtain squared values of the voltthe variable resistor®; andR; . The values of the coupling
ages corresponding @ﬁ , nﬁ. Output of the operational am- constant are chosen to lse=0.1 ande =0.5, respectively.
plifier D is the difference signal voltage. It is squared by the The first diagram demonstrates a rhombuslike structure,
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similar to that in Fig. 1d). Some peculiarities of the experi- Perhaps an electronic system could be built also to realize
mental plot distinct from the computer model may be ex-in a straightforward way the dynamics of real and imaginary
plained by inevitable deflections from perfect quadratic nonfarts of the complex variable governed by the rnitBpHow-
linearities at the edges of the working interval of voltages. €ver, our approach seems potentially more interesting be-
The second diagram for larger coupling shows a formacause we state a direction for further search for dynamical
tion remarkably similar to the Mandelbrot set. Although in Systems manifesting behavior similar to that of the complex
the experiment it was not possible to resolve extremely findterative maps. _ _
details of the structure, the location of all main leaves of the AS explained, the quadratic map used as a basic element

“cactus” are in excellent agreement with the computer gen-'” our construction, must be regarded as a representative of

erated picture. the wide universality class, which includes many realistic

Experimental measurements at different values of Couphysical systems and their mathematical modaissociated

pling confirm that the set on the parameter plabl U.) with the period-doubling bifurcation cascad#&9]. Hence, in

the case of a properly arranged coupling between two period-

corresponding to the confined dynamics evolve in accoraoub“ng elements of any nature, one may expect the whole

dance with the results of numerical computations for the )
coupled mapss). system to demonstrate the phenomena of complex analytic
It is worth emphasizing that what we deal with is a real dynamics.
physical object, effected by such factors as noise and techni- The authors acknowledge support from RFEBRant No.
cal fluctuations of voltages. The elements are not perfectl¥0-02-17509 and from CRDF(REC-006. V.I.P. acknowl-
identical, the nonlinear function is not perfectty, and so  edges support from RFBRGrant No. 99-02-17735O.B.I.
forth. A substantial circumstance is that all these factors dacknowledges support from RFBBrant No. 01-02-06385
not destroy the phenomena of complex analytic dynamicsWe thank Carsten Knudsen for discussion and useful com-

which we observe. ments.
[1] H.-O. Peitgen and P.H. RichteThe Beauty of Fractals forsch., A: Phys. Sci42, 263(1987.

(Springer-Verlag, New York, 1986 [12] M. Klein, Z. Naturforsch., A: Phys. Sc#3, 819(1988.

[2] R.L. DevaneyAn Introduction to Chaotic Dynamical Systems [13] B.B. Peckham, Int. J. Bifurcation Chaos Appl. Sci. EBg73

(Addison-Wesley, Reading, MA, 1989 (1998.

[3] A.l. Golberg, Y.G. Sinai, and K.M. Khanin, Russ. Math. [14] C. Beck, Physica 0125 171(1999.

Surveys38, 187(1983. [15] M.A. Lavrentjev and B.V. ShabaProblemy Gidrodinamiki i
[4] P. Cvitanovicand J. Myrheim, Phys. Let@4A, 329 (1983. ikh Matematicheskije Modeli (Problems of Hydrodynamics
[5] P. Cvitanovicand J. Myrheim, Commun. Math. Phyi21, 225 and their Mathematical Models)iNauka, Moscow, 197%7(in

(1989' Russian.

[6] M. Widom, Commun. Math. Phy€2, 121(1983. [16] A. Ronveaux, Am. J. Phy&5, 392 (1987.

[7] N.S. Manton and M. Nauenberg, Commun. Math. PI8&. [17] P. Senn, Am. J. Phy&8, 1018(1990

555 (1983. .
(8] RS(Mac?Kay and I.C. Percival, Physicads, 193 (1987 [18] A. Rodriguez-Vazquez, J.L. Huertas, A. Rueda, B. Perez-
[9] B. Hu and B. Lin, Phys. Rev. /&89, 4789(1989. Verdu, and L.O. Chua, Proc. IEEES, 1090(1989.
[19] M.J. Feigenbaum, Physica B, 16 (1983; Universality in

[10] M.V. Entin and G.M. Htin, Pis'ma Zh.'Rsp. Teor. Fiz. 64, _ L .
427 (1996 [JETP Lett.64, 467 (1996)]. Chaos 2nd ed., edited by P. Cvitanoviddam Hilger, Boston,
i 1989.

[11] J. Peinke, J. Parisi, B. Rohricht, and O.E. Rossler, Z. Natur-

055201-4



