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Abstract

We introduce and study coupled map lattices with complex state variable. The dynamical re-
gimes of the 1nite-length systems are classi1ed naturally in terms of a topological invariant – the
overall phase shift accumulated along the whole length at 1xed time. A stability analysis of
the spatially uniform states is presented, and the results of numerical simulations of the spatio-
temporal dynamics are discussed. We demonstrate that fast amplitude evolution, including regular
and chaotic spatio-temporal behavior, takes place on the background of a slower phase evolution.
For large values of the topological invariant the phase dynamics may give rise to an instability,
which in some cases results in a jump of the system to another value of the invariant. We also
consider the formation of long-lived “bubbles”, i.e., local domains of complicated dynamics in
the spatial regions of locally reduced phase gradient. Our coupled map lattice model and its
generalizations may be useful for understanding the dynamics in a larger range of parameters
for such nonlinear dissipative media, which allow small-amplitude description in terms of the
complex Ginzburg–Landau equation, as well as for time-delay feedback systems with nonzero
central frequency of the generated signal. c© 2001 Elsevier Science B.V. All rights reserved.

PACS: 05.45.Ra; 05.45.Xt; 05.45.−a; 63.90.+t
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1. Introduction

Coupled map lattices (CML) were introduced in the mid-1980s as a simple and con-
venient class of models for complicated spatio-temporal dynamics in terms of discrete
space and time [1–14]. The CML may be thought as a spatially ordered set of cells
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where the states of the cells are characterized by a continuous variable updated at each
step of the discrete time. It is assumed that the new state of each site depends not
only on the previous value of the variable at the same cell, but also on the values for
several neighboring sites. Postulating a particular type of dynamics for the individual
cells (say, the period-doubling behavior) one can study the CML to understand various
peculiarities of regular and chaotic dynamics for a certain class of spatially extended
systems. An extensive list of phenomena demonstrated by lattices of period-doubling
maps may be found, for instance, in the well-known work of Kaneko [7]: forma-
tion of frozen domains, pattern competition, birth, death, and Brownian motion of
defects, defect turbulence, and developed spatio-temporal chaos. Many successful ap-
plications of CMLs are known for concrete systems in physics, chemistry, and biology
[15–19], and the theoretical analysis of CMLs has stimulated a number of experi-
mental works aimed at realizing the corresponding phenomena in electronic and other
systems [20–23].
It is customary to apply the term order parameter when referring to the dynamical

variable that represents the states of the cells. This term is adopted from the theory
of phase transitions; in general, the order parameter is regarded as a locally de1ned
macroscopic characteristic of a medium, which may depend on spatial coordinates and
evolve in time. Numerous examples are known of equations, either derived from the
1rst principles or constructed arti1cially, which describe spatio-temporal evolution of
the order parameter in speci1c cases [24].
The order parameter may be not only a scalar, but a vector variable as well. One

typical example relates to a situation when the spatially uniform state of some medium
loses stability in a narrow interval of wave numbers and frequencies. Then, under very
general circumstances the spatio-temporal evolution of complex amplitude is governed
by the well-known Ginzburg–Landau equation [24–27]. For the case of one spatial
dimension it reads as

@Z=@t = AZ − b|Z |2Z + D@2Z=@x2 ; (1)

where A; b, and D are constant coeKcients (in general, complex). The order parameter
here is the complex variable Z = Z(x; t), which represents the slow amplitude of the
evolving perturbation. Note the symmetry property of Eq. (1): It is invariant under a
phase shift, i.e., with respect to the variable change Z→Zei
 , where 
 is an arbitrary
constant.
In numerous studies devoted to CML only the case of scalar order parameter has been

considered in detail. Let us present a simple example demonstrating that sometimes this
is not suKcient. Suppose we have a lattice (or a continuous medium) that consists of
elements (building blocks) with dynamics governed by an autonomous low-dimensional
system with continuous time (see e.g. [28,29]). Let us assume that with the help of the
PoincarLe section method we can, with good approximation, reduce the dynamics of an
individual element to a one-dimensional map. Does it mean that the lattice of such
coupled maps will represent the lattice (medium) under study? In general no: As we
consider not one element, but a set of elements, we should account for the possibility
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that they have diOerent times of crossing the surface of the PoincarLe section. This must
be described as the presence of some phase shift between the elements.
In this way, we come to the idea of attributing an additional variable – a phase to

the cells of the CML, and to turn to lattice models with complex order parameter. Such
models may be regarded as analogs of the Ginzburg–Landau equation, but with discrete
space and time. We expect that they will be useful for understanding the dynamics in a
larger range of parameters for media, which allow small-amplitude description in terms
of the Ginzburg–Landau equation.
CML with complex order parameter are also of interest in the context of delay-

feedback systems. As known, a kind of space-time analogy is valid for such systems:
they appear to be very close to CML in their dynamical behavior [30–33]. Suppose
we have a device containing an ampli1er and a narrow-band frequency 1lter in the
loop of delayed feedback. Let the signal circulating in the loop have some central
frequency !0 and a bandwidth P!, and assume that !0�P!�T−1, where T is the
time delay [30]. In this case one may describe the signal in terms of complex ampli-
tude which has a slow time dependence on the time scale !−1

0 . This amplitude will
serve as the complex order parameter for the CML model of the system. The depen-
dence of the complex amplitude on time in one interval of the delay is an analog of the
spatial distribution of the order parameter. Each new interval of duration T corresponds
to the next step of discrete time evolution in terms of the CML model.
The aim of this paper is to introduce and study the simplest version of coupled

map lattices with complex order parameter. Namely, we consider lattices with the
dissipative type of coupling. This means that the coupling is of such a nature that it
tends to equalize the states of the interacting elements. Nevertheless, we shall see that
this model demonstrates a rather rich and complicated dynamical behavior.
The paper is organized as follows. In Section 2, we formulate the dynamical equa-

tions for a lattice of maps with complex variable and dissipative coupling of the cells.
In Section 3, we consider qualitative peculiarities of the spatio-temporal dynamics
associated with the complex nature of the order parameter. In particular, for a lattice
with periodic boundary conditions we introduce the concept of topological phase in-
variant, and we outline the process of long-term phase relaxation. In Section 4, we
consider spatially uniform states of the model and analyze their stability. In Section 5,
the results of numerical simulations of the spatio-temporal dynamics are presented and
discussed. Finally, the conclusion gives a resume of our results and an overview of
some possible directions of further studies.

2. Basic equations

Let us start with a discrete-space analog of the one-dimensional Ginzburg–Landau
medium:

@Zk=@t = AZk − b|Zk |2Zk + D(Zk−1 − 2Zk + Zk+1) ; (2)
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where k designates the spatial index. This may be regarded as a set of coupled elements.
In isolation, each element is governed by the equation

@Z=@t = AZ − b|Z |2Z : (3)

Let us try to modify the last relation. We introduce a discrete rather than a continuous
time and de1ne the dynamics of the single element by the following complex map:

Zn+1 − Zn = AZn − b|Zn|2Zn or Zn+1 = aZn − b|Zn|2Zn ; (4)

where n is the discrete time, and a= 1+A. Without loss of generality, the parameter
a may be taken to be real (this corresponds to a proper selection of the central fre-
quency when we de1ne the complex amplitude Z for the process under consideration).
Parameter b may be complex. The sign of the real part of b determines whether the
nonlinearity suppresses (Re b¿ 0) or supports (Re b¡ 0) the growth of perturbations.
The imaginary part reQects the nonlinear inQuence of the amplitude on the phase. In
the present study we restrict our consideration to the case of real positive b; using an
appropriate normalization for Z we can set b= a.
The map (4) has a trivial 1xed point at the origin, Z = 0. This point becomes un-

stable starting from a0 = 1, which corresponds to a symmetry-breaking bifurcation: a
circle consisting of 1xed points appears. The 1xed points are stable with respect to
amplitude perturbations and are of neutral stability with respect to a phase shift. For
nonzero solutions we can substitute Z=Rei’ and hence arrive at a real one-dimensional
map for the amplitude:

Rn+1 = aRn(1− R2
n) (5)

and a trivial map for the phase

’n+1 = ’n : (6)

The nonzero 1xed point R =
√
1− 1=a existing for a¿a0 loses its stability at

a1 = 2, when a period-2 cycle appears. Hereafter, a period-doubling sequence follows,
with bifurcation values of

a2 = 2:2360679 : : : ; a3 = 2:2880317 : : : ; a4 = 2:2992279 : : : ;

a5 = 2:3016289 : : : (7)

This sequence converges to the Feigenbaum accumulation point [34,35], ac =
2:3022834627 : : : ; – the border of chaos. Note that up to a = a∗ = 3 iterations which
started near the origin never diverge to in1nity.
Now we are ready to build a chain of coupled elements. There are diOerent ways to

de1ne coupling between neighboring cells: see Refs. [36–39] for a discussion of this
matter for lattices with scalar order parameter. In the present paper we choose a special
type of coupling, which has been found to exhibit the simplest dynamics in the scalar
case (see e.g. [6,7,40,41]). Its distinguishing property is that it tends to equalize the
states of the interacting cells. According to the terminology of the papers [6,36,37,41]
it is called the dissipative coupling. Let us suppose that one-step evolution of the chain
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of elements (4) consists of two stages: (i) each element evolves according to Eq. (4)
independent of the others and (ii) a new updated Z attributed to each site is obtained
from some averaging over the previous states of the neighboring elements. One simple
version of such a dissipatively coupled map lattice looks like

Zn+1; k = Z̃n; k + �(Z̃n; k−1 − 2Z̃n; k + Z̃n; k+1); Z̃n; k = aZn; k(1− |Zn; k |2) ; (8)

where k and n are the space and time index, respectively, and � is the coupling constant.
A slightly more sophisticated version is represented by the equation

Zn+1; k = aZn; k(1− |Zn; k |2) + �(Zn+1; k−1 − 2Zn+1; k + Zn+1; k+1) : (9)

This applies to the so-called ‘future coupling’ (see [6,40,41] for discussion of the scalar
case).
The disadvantage of the simple Eq. (8) is that it allows only a restricted interval

for the coupling parameter �; for large values of � divergence occurs. In contrast, in
Eq. (9) one can choose an arbitrary, positive �: the larger � is the stronger the equalizing
action will be of the coupling onto the states of the interacting cells. However, in this
case to perform one time step and to 1nd the updated set of Z one needs to solve a
set of linear algebraic equations. Due to the three-diagonal structure of the associated
matrix, this may be done with the help of a simple standard algorithm [42]. Hence,
we prefer the model (9).
It is worth noting that in the case of large coupling, neighboring sites of the lattice

(9) inevitably have very close states at the same moment, so there exists a well-de1ned
continuum limit. Namely, we can regard Z as a function of a continuous spatial
coordinate x and substitute the second spatial derivative @2Zn+1(x)=@x2 instead of the
1nite-diOerence combination presented in Eq. (9). This yields

Zn+1(x) = aZn(x)(1− |Zn(x)|2) + �@2Zn+1(x)=@x2 : (10)

3. Qualitative peculiarities of spatio-temporal dynamics

We will assume that the lattice is of 1nite length L, i.e., 06k ¡L, and impose
periodic boundary conditions such that ZL = Z0. The system has yet an intrinsic space
scale associated with the characteristic coupling length de1ned as l ∼ √

� . It is natural
to suppose that L=l� 1, and this is also a condition for the spatially extended nature
of the model to be of relevance.
Note that both Eqs. (8) and (9) allow for a class of real solutions, Zn; k ≡ ReZn; k ≡

Rn; k . In this case the system behaves as a conventional CML with scalar order pa-
rameter constructed from period-doubling elements (see e.g. [7,10,11,40,41]). We are
interested, however, mainly in the case of complex solutions.
Let us suppose that at some 1xed moment of time we have a distribution of the

complex amplitude Z changing slowly in space from site to site of the lattice in such
a way that it may be regarded as quasi-continuous. In the complex plane of Z this will
be represented by some curve; as a consequence of the periodic boundary conditions,
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Fig. 1. De1nition of the topological invariant: The closed curve on the left plot represents the graph of
the complex order parameter as the spatial coordinate is changed over the whole system length at 1xed
time step. The right plot relates to the next time step. The arrows show schematically the domain of inQuence
of the lattice sites onto the state of some particular cell. The number of excursions around the origin is
the topological invariant m.

this curve must be closed (Fig. 1). Suppose that the curve does not contain the origin
and does not pass too close to it. Then, there is a well-de1ned number

m= (2�)−1
L∑

k=1

P’k ; (11)

the phase change for Z accumulated around the curve and measured in units of 2�. It
is easy to see that under very general circumstances this value will remain the same
after a time step and, hence, may be regarded as a topological invariant. Indeed, at
the stage of local nonlinear evolution (i), the direction of vector Z at each site re-
mains unchanged so the accumulated phase shift is conserved. At the stage of coupling
(ii) the neighboring sites to a particular cell possess similar complex amplitudes. As
the updated amplitude appears as a result of an averaging, it will have approximately the
same direction as the original one. Obviously, if we perform one excursion around
the whole loop of the original plot we get the same number of rounds in the plane of
the updated amplitudes (Fig. 1). The only possibility of a change of the topological
invariant in the process of the time evolution is either a passage of the Z-loop across
the origin, or the appearance of a fast oscillating spatial pattern. With these exceptions,
all dynamical regimes of the system of nonzero amplitude are naturally subdivided
into a number of classes, each of which is characterized by a de1nite value of the
topological phase invariant m.
The matter of relevance for our model is the question concerning the evolution of

the phase. Let us suppose for a while that we operate in a dynamical regime for which
the amplitude R= |Z | remains approximately constant over the whole lattice. (This is
possible if we are near the stable 1xed point of the individual map (5), R=

√
1− 1=a:)

Then, it is easy to conclude that in the continuum limit the phase ’(x; t) will obey
the diOusion equation

@’=@t = �@2’=@x2 ; (12)
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where t denotes continuous time, and x is a spatial coordinate introduced instead of
index k. Indeed, substituting Z =Rei’ and @2Z=@x2 = [R′′ +2iR′’′ + iR’′′ −R(’′)2]ei’

into (10) we obtain

Rn+1 + �(R′′
n+1 + 2iR′

n+1’
′
n+1 + iRn+1’′′

n+1 − Rn+1(’′
n+1)

2)

= aRn(1− R2
n)e

i(’n−’n+1) ; (13)

where the primes designate the spatial derivatives. Neglecting variations of the real
amplitude (i.e., Rn ∼= Rn+1

∼=
√
1− a−1) yields

1− i�@2’n+1=@x2 ∼= ei(’n−’n+1) ∼= 1 + i(’n − ’n+1) : (14)

Finally, changing from discrete time to continuous, we arrive at Eq. (12).
It follows from (12) that the characteristic time of decay of the phase perturbations

having the spatial scale Px must be of order Pt˙ (Px)2=�=(L=l)2. The largest spatial
scale is the lattice length L, and this corresponds to a time of the phase relaxation
Pt˙L2=�=(L=l)2. Considering that L=l� 1, we notice that this is a very slow process.
If we have a complex amplitude distribution corresponding to the topological invari-

ant m, the boundary condition for the phase equation (12) should be ’|x=L=’|x=0+2�m.
Under this constraint, the 1nal result of the evolution in accordance with Eq. (12) will
be a linear 1nal distribution of the phase, ’(x) = ’0 + 2�mx=L.
This explains a tendency of linear spatial variations of the phase to arise as observed

in the numerical simulations (see Section 5). As it follows from the computations,
this phenomenon is intrinsic not only to the states with spatially uniform amplitude
distributions, but in some approximation takes place even under more general conditions
when nonuniform, nonstationary patterns are present. Also, in these cases the very slow
process of the phase evolution is observed, which is of a similar nature to that discussed
for the uniform states.

4. Spatially uniform states and their stability

Let us consider in more detail a class of states for our complex CML model
characterized by the uniform spatial distribution of the amplitude and a linear phase
dependence:

Zn; k = Rnei’n; k ; ’n; k = ’n; 0 + �k ; (15)

here

�= 2�m=L (16)

is the quantity that we call the phase gradient parameter. The last relation ensures
consistency of the instantaneous state with the imposed periodic boundary conditions,
and it contains an integer m, which is the topological phase invariant. However, in
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the asymptotic limit of large L, the dependence of all relevant quantities on � may be
regarded as quasi-continuous.
Substitution of the expressions (15) into the dynamical equation (9) yields

[1 + 2�(1− cos �)]Rn+1 = aRn(1− R2
n) (17)

or

Rn+1 = a′Rn(1− R2
n) ; (18)

where

a′ = a=[1 + 2�(1− cos �)] : (19)

The conclusion is that the dynamics of the amplitude in the uniform state is governed
by the same equation as the amplitude of an individual element of the CML, but
with a reduced parameter a′. Naively, one could think that in the range 1¡a′¡ 2
the 1xed-point, or period-1 solution would exist as an attractor, and in the ranges
as−1¡a′¡as (see (7)) – cycles of time period 2s would occur. It appears, however,
that stability or instability of these regimes does not depend only on a′, but also on
the phase gradient parameter � associated with the topological invariant.
Let us consider a perturbation of the uniform solution and set

Zn; k = Rn(1 + un; k + ivn; k)ei�k ; (20)

where un; k and vn; k correspond to variations of the amplitude and phase, respectively,
and are supposed to be small, |un; k | and |vn; k |� 1. Substituting this expression into
(9) we obtain Eq. (18) to zero order, and the equations

Rn+1[un+1; k − �(un+1; k+1 − 2un+1; k + un+1; k−1)] = aRn(1− 3R2
n)un; k ;

Rn+1[vn+1; k − �(vn+1; k+1 − 2vn+1; k + vn+1; k−1)] = aRn(1− R2
n)vn; k (21)

in the 1rst order. Now, as usually done in a linear stability analysis, we may search
for a solution with a de1nite wave number, namely, un; k = Unei�k and vn; k = Vnei�k .
To simplify the resulting equations we divide them by Eq. (18). This yields

1 + 2�(1− cos� cos �)
1 + 2�(1− cos �)

Un+1 +
2� sin � sin �

1 + 2�(1− cos �)
iVn+1 =

1− 3R2
n

1− R2
n
Un ;

− 2�sin � sin �
1 + 2�(1− cos �)

iUn+1 +
1 + 2�(1− cos� cos �)

1 + 2�(1− cos �)
Vn+1 = Vn : (22)

Solving this set of two linear equations with respect to Un+1 and Vn+1 we obtain the
expression:[

Un+1

iVn+1

]
=Mn

[
Un

iVn

]
; (23)

where

Mn =

[
1−3R2

n
1−R2

n
P(�; �) 1−3R2

n
1−R2

n
Q(�; �)

Q(�; �) P(�; �)

]
; (24)
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Fig. 2. Parameter plane of nonlinearity parameter a versus phase gradient parameter � for the CML model
(9) at a coupling constant �=10. White areas are domains of stability of spatially uniform states, the trivial
steady state R = 0 is marked by 0, states of nonzero amplitude and of period 1, 2, 4 – by the respective
numbers.

with

P(�; �) =
[1 + 2�(1− cos �)][1 + 2�(1− cos� cos �)]

[1 + 2�(1− cos(� + �))][1 + 2�(1− cos(� − �))]
;

Q(�; �) =− 2� sin � sin �[1 + 2�(1− cos �)]
[1 + 2�(1− cos (� + �))][1 + 2�(1− cos (� − �))]

:

Stability of the solution of time period N =2s is determined by the eigenvalues $1 and
$2 of the matrix M, which is the product

M =MN−1MN−2 · · ·M1M0 : (25)

These eigenvalues can be found as the roots of the quadratic equation

$2 − S$ + J = 0 ; (26)

where S is the trace, and J the determinant of the matrix M.
At each point of the parameter plane (�; a) we 1rst estimate the period of the

cycle to be analyzed (compute a′ according to (19) and see what interval [as−1; as)
it relates to). Then, we consider $1 and $2 in dependence on the wave number � and
determine the maximum value of their modulus over the whole interval 06�¡ 2�. If
this modulus is larger than 1, then the point (�; a) relates to a region of instability.
It should be noted that for � = 0 one of the eigenvalues always equals 1: Due to
invariance of the system with respect to a phase shift, the asymptotically long wave
of the phase perturbation possesses a neutral stability – the Goldstone mode [43,24].
In Fig. 2 we present a parameter plane plot where the regions of stability and

instability are shown for the spatially uniform states. The states of diOerent time periods
are separated by parabola-like curves, namely a=[1 + 2�(1 − cos �)] = as (see (7) for
the numerical values of as). Moving along these curves to the left or to the right,
one can observe a loss of stability of the uniform states at some larger values of |�|.
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Fig. 3. The middle diagram depicts the parameter plane of nonlinearity parameter a versus phase gradient
parameter � for the CML model (9) at coupling constant �=10 with a logarithmic scale along the vertical axis
(proportional to log (ac−a′)). Numbers 1; : : : ; 32 designate time period of the spatially uniform states inside
their stability domains, shown as white. Gray areas correspond to instability. Dashing with two opposite
directions designates the stability loss via the eigenvalue equal either to 1, or to −1 at the threshold. The
diagrams for eigenvalues versus the wave number are shown at some representative points of the parameter
plane around the central 1gure.

To distinguish the structure of the stability border in more detail we have redrawn the
parameter plane diagram in Fig. 3: the parameter of deQection from the critical point of
period-doubling accumulation is plotted along the vertical axis in a logarithmic scale.
The dashing at the border is of two opposite directions. This corresponds to two distinct
situations: one of the eigenvalues becomes equal either to 1, or to −1 at the threshold.
In Fig. 3 we also present a set of plots of eigenvalues versus the wave number at

some representative points of the parameter plane. They illustrate the nature of the
stability loss at diOerent parts of the stability border. The branch possessing maximum
$=1 at �=0 may be associated, roughly speaking, with the mode of phase perturbations,
and the other branch with the mode of amplitude perturbations. (Of course, only at
� = 0 this classi1cation is exact, otherwise perturbations associated with each branch
contain both amplitude and phase oscillations, although in diOerent proportions. In some
cases the curves meet, and the eigenvalues become complex. Here it is meaningless to
distinguish the amplitude and phase modes.)
The parameter plane region for period 1 has a special arrangement: At the side

edges of the stability domain the curve $ = $(�), associated with the mode of phase
perturbations, displays a maximum of the fourth order. Crossing the boundary leads
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to the appearance of three extrema – central minimum at � = 0, and two symmetric
maxima at both sides. The upper boundary is associated with a moment of tangency
of the second branch $(�) with the line $ =−1 at � = 0.
Surveying the stability domains for higher periods in Fig. 3, one can observe that

their structure alternates at subsequent steps of doubling of the time period. For periods
2; 8; 32; : : : the lateral border consists of two notable segments: in one case we have
eigenvalue $=−1 at some wave number �, and in another $(�)=+1. The 1rst situation
occurs at the top segment of the boundary; there the instability appears as a growing
alternating perturbation of some wavelength. The second case takes place at the bottom
part of the boundary and corresponds to the growth of a Turing-like structure without
time oscillations. In contrast, for periods 4; 16; 64; : : : the side edges of the stability
domain almost entirely relate to an instability of the second kind, $(�) = 1.

5. Numerical simulations

In this section we present results of numerical simulations of spatio-temporal
dynamics for our CML model with complex order parameter. It appears useful to
treat the computer results in the context of the above linear stability analysis, although
they surely go beyond the approximations assumed there.
In the top left corner of Fig. 4 we reproduce the diagram of the parameter plane

(�; a) for � = 10. The equidistant vertical lines correspond to allowed values of the
phase gradient parameter � associated with integer values of the topological invariant
at the lattice length L = 250.1 In the course of our computations a switch from one
de1nite value of the topological invariant to another was produced by multiplying the
instantaneous complex amplitudes by exp(2�ikPm=L) at each kth site. Here Pm is
an integer, which we wish to add to the topological invariant. Such a rede1nition
of the instantaneous state of the lattice corresponds to a horizontal jump from one
to another of the allowed vertical lines on the plane (�; a). In this way we could
obtain and observe a set of regimes associated with diOerent values of the topological
invariant. In fact, they must be regarded as relating to diOerent attractors coexisting in
the multidimensional phase space at the same value of the parameter a.
All other plots in Fig. 4 are spatial diagrams, each of which is formed by super-

imposing instantaneous spatial distributions of the amplitude (solid lines) and of the
accumulated phase shift (dotted lines). All the pictures (except the last two) correspond
to sustained (at least, approximately sustained) regimes associated with the same non-
linearity parameter a, but with diOerent values of the topological invariant. Observe
the diOerent slopes of the phase plots.
For zero � the presented spatial diagram has been obtained as a 1nal result of the

transient process starting from random real initial conditions, Zk =Rk; 0¡Rk ¡ 1. As

1 These vertical lines are not continued into the bottom white area of the zero-amplitude state because there
the phase is not de1ned, and the concept of the phase invariance has no sense.
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Fig. 4. In the top left corner the parameter plane diagram from Fig. 2 is reproduced. The equi-distant vertical
lines correspond to allowed values of the phase gradient parameter, associated with integer values of the
topological invariant. The lattice length is L=250 and the coupling constant �=10. All other plots are spatial
diagrams, which relate to regimes obtained from the original one (m = 0) by subsequent switches of the
topological invariant, as described in the text. The corresponding points on the parameter plane are marked
by small crosses. Each diagram is formed by superposition of 16 instantaneous spatial distributions of the
amplitude (solid lines) and of the accumulated phase shift (dotted lines). The last two plots illustrate the
development of the phase instability with a jump into the 1nal regime of a reduced value of the topological
invariant.

a is slightly larger than the critical value ac, what is observed is exactly the state called
after Kaneko [7] the frozen domain structure. Having local dynamics corresponding to
time period 2; 4; 8; : : : we naturally get a number of spatial domains, corresponding to
synchronous oscillations of some sets of neighboring cells, separated by the domain
walls. The actual lengths of the domains depend on the particular initial conditions.
Temporal dynamics inside shorter domains looks more regular, and that inside longer
domains looks more chaotic. Moreover, secondary domains, having larger time period
of oscillations, may exist inside primary domains of suKciently large length.
Increasing the topological invariant by subsequent switches m→m+1, as explained

above, we observe a transformation of the original domain structure. Although the
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Fig. 5. Space-time diagrams for the amplitude (left) and for the accumulated phase (right) in the model (9),
L=250, a=1:7; �=10. The initial condition corresponds to a state of constant amplitude, and phase linearly
increasing in space (the topological invariant m= 8); small random perturbations are added. The change of
the topological invariant is clearly observed while looking at the right edge of the diagram for phase.

control parameter a is kept constant, we see that the domain structure becomes less
developed at larger values of the topological invariant: at m = 2 the time period 4 is
observed inside the domains, at m= 4 and 5 the period-2 solution is found. At m= 7
the domain structure vanishes, and the spatially uniform sustained regime takes place.
Note that all the regimes are characterized 1nally by an almost linear dependence of
the phase on the spatial coordinate. This agrees with arguments presented in Section 3,
although these arguments should be valid, strictly speaking, for states without domains
only.
If we increase the topological invariant even more, we 1nally cross the border of

instability for the period-1 homogeneous state and observe a dramatically developing
process of growth of perturbations with some dominant wavelength (see the last two
plots of Fig. 4). This leads to progressing deQections from the uniform amplitude
distribution, and, 1nally, to a violation of the condition of conservation for the topo-
logical invariant. After relaxation of the phase transients the system appears to be in
some regime of diOerent, smaller topological invariant. (In the present case this is the
regime m=2; for other realizations we observed jumps to other values of m as well.)
The spatially uniform state of period 1 with this value of the topological invariant
belongs to the region of amplitude instability, so the domain structure develops again
(see the last plot of Fig. 4).
To relate the dynamics of amplitude and phase in the process of destruction of the

topological invariant we present space–time diagrams for amplitude and phase distri-
butions in Fig. 5. They are obtained for a = 1:7, which corresponds to the regime of
sustained time period 1. The initial condition is de1ned as a state of constant amplitude
with the phase linearly increasing in space (the topological invariant m=8), and small
random perturbations are added. Perturbations of some appropriate wavelength grow
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Fig. 6. Same as in Fig. 5, but for a = 3:862; � = 10; L = 250. The topological invariant remains constant
and equal to the original value m = 11 during the whole process.

in time and become visible in the middle part of the diagrams. At some stage of the
process they are so large that the amplitude vanishes at some points, and this destroys
the topological invariant. After relaxation the system 1nally appears to be in a regime
of smaller topological invariant, in the present case, m= 1.
In contrast, development of the phase instability on a background of states of period

2 or higher was observed not to destroy the topological invariant, at least as long as
we are not too far from the stability border. In these cases, a kind of pattern formation
takes place, see an example in Fig. 6.
As we mentioned in Section 3, one of the essential properties of our system with

complex order parameter is a very slow evolution of the phase perturbations, the time
scale has been estimated as Tch˙ (L=l)2. It is worth noting that near the border of the
phase instability for the period-1 steady state the phase dynamics becomes yet slower.
Indeed, the dependence of the eigenvalue $1(�) displays that there is an extremum
of the fourth order, so the most long-lived phase perturbations will have characteristic
relaxation times of the order Tchar˙ (L=l)4.
The 1nal stage of the process of the spontaneous switch of the topological invariant

consists typically in this slow phase evolution. If the domain structure is present, it
undergoes a slow deformation in the course of this evolution.
Let us turn to one special example and suppose that the initial state of the lengthy

CML is prepared in such a way that the value of the local phase gradient depends
on the spatial coordinate, being less in some regions and larger in others. As the
phase gradient determines the eOective value of the nonlinearity parameter a (see
(19)), we can observe diOerent regimes of local amplitude dynamics in distinct
space intervals. Under appropriate selection of the parameter a we will have long-lived
localized “bubbles” of complicated regular or chaotic dynamics separated by domains
of steady state. The larger the spatial scales are, the longer the time of existence of
the “bubbles” will be. Fig. 7 illustrates this phenomenon. Each diagram shows 16
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Fig. 7. The spatial diagrams representing superimposed spatial distributions of amplitude and phase at diOerent
stages of the slow phase evolution in the model (9), a=2:4; �=10; L=500. The initial conditions correspond
to random amplitudes in a small range of about R=0:5, while the phase dependence on the spatial coordinate
has two plateaus. Observe the two “bubbles” which gradually vanish in the course of the slow process of
phase relaxation to the linear spatial distribution.
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subsequent superimposed spatial distributions of amplitude and phase and belongs to a
certain stage of the slow phase evolution. In the initial pictures of Fig. 7 one can see
two “bubbles”. As the phase distribution gradually relaxes to the linear one, the bubbles
vanish. The 1nal stage is the uniform period-1 state with constant phase gradient.
In dependence on the parameter a and on the mean phase gradient � one can observe

either disappearance of the “bubbles” or their coagulation. The whole picture looks
similar to a 1rst-order phase transition: the phase gradient plays the role of tempera-
ture. Another analogy for the long-lived “bubbles” is well known in hydrodynamics.
Here, we refer to the turbulent spots presented in the so-called intermittent turbulence
[44–47].

6. Conclusion

As we have asserted in this paper, besides conventional coupled map lattices, which
use the scalar state variable, a similar class of models with complex order parameter
is of great potential signi1cance. They may be considered as analogs of the Ginzburg–
Landau equation with discrete space and time.
We have suggested a concrete CML model with coupling of the dissipative type

between the elementary cells, and studied in some detail the peculiarities of its spatio-
temporal dynamics. We have argued that the dynamical regimes observed in a 1nite-
length system with periodic boundary conditions are classi1ed naturally in terms of
a topological invariant – the overall phase shift accumulated along the system length
for 1xed time. We have shown that the two components of the dynamical evolution,
associated mainly with the amplitude and phase, respectively, possess essentially dis-
tinct time scales. Hence, the fast amplitude evolution (that means regular and chaotic
spatio-temporal dynamics, pattern formation, competition of patterns, and so forth) de-
velops on a background of slow phase evolution. For some range of values of the
topological invariant the phase evolution leads ultimately to almost linear spatial distri-
bution of the phase. Once the system reaches this state, the amplitude regime becomes
sustained (at least, in a statistical sense) too. For larger values of the topological invari-
ant the phase dynamics may lead to instability, which in some cases results in violation
of the topological invariant and “jumping” to another integer value. For regimes of time
period larger than one, the development of the phase instability may not be accompa-
nied by a change of the topological invariant, but results in the emergence of a special
kind of spatial pattern. We also emphasize the possibility of formation and evolution
of “bubbles” – local domains of complicated dynamics placed in the regions of lo-
cally reduced phase gradient. Transformation of this process at the border of the phase
instability resembles a phase transition of the 1rst order. This observation may be of
interest for search and explanation of similar phenomena in spatially extended systems
of diOerent nature.
It is worth stressing once more that our results relate only to the simplest ver-

sion of the CML with complex order parameter. Even in the scalar case for coupled
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period-doubling elements it was shown that there exist two essentially distinct types of
coupling [3,36–39]. The complex equation includes the scalar dynamics as a particular
case, and both these types of coupling can be introduced into the model. Hence, one
could turn to more complicated CML models, than represented by Eqs. (8) and (9),
taking into account inertial coupling too. Moreover, the presence of an additional vari-
able, the phase, opens additional possibilities for the construction of coupling, because
it may act, generally speaking, in diOerent manners on the amplitude and on the phase
of the coupled elements. Next, one could turn to lattices of two and three spatial di-
mensions with complex order parameter, which will have, surely, much more nontrivial
topological properties of the spatio-temporal dynamics. We hope that this paper will
stimulate further researches along these directions.
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