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The paper presents several universality classes of critical behavior, which may occur at the onset of chaotic or strange 

nonchaotic attractors via quasiperiodicity. Parameter space arrangement and respective scaling properties are discussed 

and illustrated. 

1. Introduction 
Turbulence as a dynamical process in spatially extended systems attracts attention of researchers for 
a long time. An important aspect of the problem is the question: how does the spatio-temporal chaos 
originate from simple regular regimes as we vary one or more control parameters? As known, cha-
otic dynamics in multi-dimensional systems may arise via quasiperiodicity, in a course of subse-
quent birth of oscillatory components with incommensurate frequencies, followed by chaotization 
(see e.g., early works of Landau, Hopf, and Ruelle and Takens [1,2,3]). However, details of the 
transition from quasiperiodicity to chaos are subtle and complicated. Some of them may be revealed 
if we turn to a restricted problem: Suppose that the object can be decomposed to a master subsystem 
with quasiperiodic behavior, and a driven slave subsystem that demonstrates transition to chaos. 
Then, what are possible scenarios of the onset of chaos in the second subsystem? (This question 
also is of special interest in context of synchronization of systems with complex dynamics by peri-
odic external force.) 

One important advance on this way of reasoning was formulation of the concept of strange 
nonchaotic attractor (SNA) [4-6]. In the phase space SNA is an object of fractal geometrical struc-
ture, but without instability in respect to initial conditions. In quasiperiodically forced systems SNA 
are found to be very typical in an intermediate region between order and chaos.  

One more essential idea consists in application of the renormalization group (RG) approach, 
proven to be very efficient for understanding dynamics in critical states at the chaos threshold (e.g. 
[7-13]). The critical behavior may be universal for a class of systems of distinct physical and 
mathematical nature. Hence, all relevant details for the critical dynamics may be revealed in one 
model, the simplest representative of the universality class. Originally, this approach has been de-
veloped by Feigenbaum for the period-doubling scenario of the onset of chaos [7,8,9], and latter for 
quasiperiodic transition to chaos by Feigenbaum–Kadanoff–Shenker and Ostlund et al. [10-12]. Af-
terwards, analogous treatment was applied to some cases of birth of SNA [14-16]. 

If a system we deal with possesses several control parameters, it is natural to introduce parame-
ter space and speak about structure of this space in geometrical terms. It may contain some bifurca-
tion surfaces, critical surfaces, separating domains of chaos and order, critical lines and points, 
where some special regularities of dynamical behavior at the onset of chaos occur. In 
Refs.[13,17,18] such a picture is revealed and studied in some details for the period-doubling transi-
tions to chaos. 

In the present paper we review and discuss several types of critical behavior associated with the 
onset of chaotic or strange nonchaotic dynamics via quasiperiodicity in model systems. We consider 
two-frequency quasiperiodic motions with the golden-mean ratio of the basic frequencies, 

2)15( −=w . This irrational number is a traditional choice in many studies of quasiperiodicity. 
One reason is simplicity of the theoretical description. Another is a possibility to observe more sub-
tle details of bifurcational structures in numerical and physical experiments than it would be possi-
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ble for any other selection of the frequency ratio. In Sec.2 the procedure of RG analysis appropriate 
for the golden-mean quasiperiodicity is explained, and a two-dimensional generalization of ap-
proach of Feigenbaum-Kadanoff-Shenker [10] and Ostlund et al. [11,12] is developed. In Sec.3 we 
discuss model systems including quasiperiodically driven logistic, circle, and fractional-linear 
maps. In Sec.4 our generalized RG scheme is used to reproduce some results of classic analysis of 
quasiperiodic transition to chaos in the circle map [9-12]. In Sections 5, 6, and 7 we review three 
novel types of critical behavior discovered in a course of joint research program with the group of 
nonlinear dynamics and statistical physics from Potsdam University (A.Pikovsky, U.Feudel, 
E.Neumann) [15,16,19]. For each type of criticality we illustrate scaling for the critical attractor as-
sociated with dynamics exactly at the critical point, and scaling of topography of the parameter 
plane near the criticality. 

2. Two-dimensional generalization of the Feigenbaim-Kadanoff-Shenker equation 
Let us consider quasiperiodic dynamics in some system with two basic frequencies, ω1 and ω2, and 
assume that two subsystems associated with these frequencies are coupled unidirectionally. To de-
scribe dynamics in terms of Poincaré map, we perform stroboscopic cross-section of the extended 
phase space by planes of constant time, separated by 22 ωπ=T . The first subsystem (“master”) is 
independent of the second one, and the associated dynamical variable is the phase ϕ governed by 
equation . For the second subsystem (“slave”) we assume that the dy-
namics is essentially one-dimensional: 

)2(mod11 πω+ϕ=ϕ + Tnn

),(1 nnn xFx ϕ=+ . In respect to the second argument the 
function  is 2π-periodic. Instead of ϕ we introduce a variable u defined modulo 1: ),( ϕxF

 )1(mod),,( 11 wuuuxfx nnnnn +== ++ , (1) 

where , )2,(),( uxFuxf π= 211 2 ωω=πω= Tw . In the further study we fix 2)15( −=w . 
In general context of nonlinear dynamics, the basic idea of the RG analysis consists in the fol-

lowing. We start with an evolution operator of a system on a definite time interval and apply this 
operator several times to construct the evolution operator for larger interval. Then, we try to adjust 
parameters of the original system to make the new operator reducible to the old one by scale change 
of dynamical variables. This procedure is called the RG transformation. The adjusted parameters 
will define location of the critical point. The RG transformation may be applied again and again to 
obtain a sequence of the evolution operators for larger and larger time intervals. If the approach 
works, one possibility is that the produced operators become asymptotically identical, and we speak 
about a fixed point of the RG transformation. Another possibility is that they repeat each other after 
several steps of the RG transformation, and we speak about a periodic orbit, or a cycle of it. In any 
of these cases, the rescaled long-time evolution operators will be determined by structure of the RG 
transformation, rather than by concrete dynamical equations of the original dynamical system. This 
implies universality. On the other hand, repetition of the rescaled evolution operators at subsequent 
steps of the RG transformation means that the system manifests similar dynamics on different time 
scales. This implies scaling.  

How can we apply this approach to critical phenomena associated with the golden-mean qua-
siperiodicity? As known, the convergent sequence of rationals for 2)15( −=w  is defined 
as kk FF 1− , where Fk are the Fibonacci numbers (F0=0, F1=1, Fk+1= Fk + Fk–1). This sequence deliv-
ers the best possible approximation for w, and the dynamics on a time interval Fk is close to peri-
odic. So, it is natural to consider a sequence of evolution operators over intervals of discrete time 
given by the Fibonacci numbers. 

Let  and  designate transformation of x after  and  iterations, respec-
tively. To construct the next operator, for  iterations, we start from  and perform first 

 iterations to arrive at ( ), and then the rest  iterations with the result 

),( uxf kF ),(1 uxf kF +
kF 1+kF

2+kF ),( ux

1+kF wFuuxf k
Fk

1),,(1
+++

kF
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 . (2) )),,((),( 1
12

++= ++
k

FFF wFuuxffuxf kkk

To have a reasonable limit behavior of the evolution operators we change scales for x and u by 
some factors α and β at each new step of the construction, and define the renormalized functions as 
 ))(,(),( uwxfuxg kkk

k −αα= . (3) 

Note that , so it is natural to set )1mod()( 1
1

+
+ −−= k

k wwF ...618034.11 −=−=β w . Rewriting (2) 
in terms of the renormalized functions we come to the functional equation [15, 16, 19] 
 )),,((),( 2

1
12

2 wuwuwxgguxg kkk +−ααα= +
−

+ . (4) 

In the present article we deal with several different solutions of this equation – fixed points or cy-
cles in the functional space. The constant α is specific for each universality class; it is evaluated in a 
course of solution of the functional equation.  

The next step of the RG analysis consists in the following. Let us suppose now that we deal 
with dynamics not precisely at the critical point, but in a vicinity of it in the parameter space. Then, 
a perturbation of the solution appears. Analyzing evolution of the perturbation we come to an ei-
genvalue problem. A number of relevant eigenvalues define a codimension of the critical situation. 
The relevant eigenvalues are those, which are larger than 1 in modulus, not associated with infini-
tesimal variable changes, and not violating the commutative properties of successively applied evo-
lution operators (see e.g. [10-12, 15,16,19] for details). The codimension may be understood as a 
number of parameters, which must be adjusted to reach the criticality. For instance, in three-
dimensional parameter space the codimension-one situations may occur at some surfaces, codimen-
sion-two situations at curves, and codimension-three at points.  

To derive an explicit form of the linearized RG equation appropriate for a vicinity of a fixed 
point  we substitute ),( uxg ),(),(),( uxhuxguxg kk ε+= , ε<<1 and account terms of the first order 
in ε in Eq.(4). Then, setting  we arrive to the eigenvalue problem )()( xhxh k

k δ=

 ).),,((),()),,((),( 212212 wuwuwxghuwxhwuwuwxgguxh +−ααα+−α+−αα′αδ=δ −−     
 (5) 
For each particular type of criticality, with specific g(x,u) and α, this equation can be solved nu-
merically to obtain spectrum of relevant δ. 

2. Basic models 
The simplest example, for which the developed RG scheme is applicable is the well known circle 
map [20,21, 10-12, 9] 
 ( ) )1(mod2sin21 nnn xKrxx ππ−+=+ , (6) 

where r and K are two relevant control parameters. The function in the right-hand part is monotone 
in the subcritical domain K <1, and it has maxima and minima in the supercritical domain K>1. For 
critical value K=1 the function has cubic inflection points.  

Figure 1 shows chart of dynamical regimes on the parameter plane (r, K). For K<1 one can ob-
serve periodic or quasiperiodic regimes associated with rational or irrational values of the rotation 
number defined as )(lim),( nxKr n

n ∞→
=ρ . Periodic regimes are observed inside the Arnold tongues, 

and quasiperiodic motions are observed between them for K<1. Here one can find a curve of con-
stant golden-mean rotation number: wKr =ρ ),( . This curve starts at K=0, r=w, and meets the criti-
cal line K=1 at the point 
 KGM=1, rGM=0.60666106347…  (7) 
we call the GM critical point (GM stands for the ‘golden mean’). It was discovered by Shenker [21] 
and afterwards studied in terms of RG analysis by Feigenbaum–Kadanoff–Shenker and by Ostlund 
et al. [10-12]. 
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Further examples of types of critical behavior we discuss in the present article occur in quasipe-
riodically forced maps.  

One model is the quasiperiodically driven logistic map [22-26, 15,16]. A usual logistic map 
 is a basic model to study period-doubling transition to chaos. As it has the only rele-

vant parameter λ, a natural generalization for presence of the external driving is to assume that this 
parameter is modulated with some frequency. In our study this frequency, measured in units of time 
discretization is fixed, 

2
1 nn xx −λ=+

2)15( −=w . So, the model is  

 . (8) nwxx nn πε+−λ=+ 2cos2
1

Figure 2 shows a chart of dynamical regimes for this model on the parameter plane (ε, λ).  
For  Eq.(8) becomes the conventional logistic map. So, what is observed along the line 

ε=0 is the usual period-doubling cascade, accumulated to the limit critical point of Feigenbaum 
(point F) [7,8].  

0=ε

Let us take a value of λ at which the unforced map has a stable fixed point. At nonzero ε the 
fixed point will be transformed into a stable smooth invariant curve. In continuous-time dynamical 
systems such curves appear in the Poincaré cross-section for the motion on a torus, so, with com-
monly used abuse of the terminology, we speak about the torus-attractor T1.  

If the external force of small amplitude effects a stable period-2 orbit, it gives rise to an attrac-
tor consisting of two closed smooth curves, the doubled torus T2. Period-4 orbit generates a four-
part invariant curve (the torus T4), and so forth. In contrast to usual period-doubling, the sequency 
of torus-doubling transitions appears to be finite: the smaller amplitude of driving, the larger num-
ber of torus doublings seen in a course of increase of λ [22-28].  

If we keep λ constant and increase the forcing amplitude, the smooth torus may transform into 
SNA: the Lyapunov exponent remains negative, but the geometrical structure of the attractor be-
comes complex, fractal-like. Also regimes with positive Lyapunov exponent arise for larger λ and 
ε. With further increase of the parameters the orbits escapes to infinity (white domain in Fig.1). 

As known, the parameter interval corresponding to existence of an attractive fixed point in the 
unforced logistic map )75.0,25.0(−∈λ  is bounded from one side by the tangent bifurcation, colli-
sion of a pair of fixed points (stable and unstable) with their subsequent disappearance. From the 
other side it is bounded by the period-doubling bifurcation. Analogously, the bottom border of the 
domain T1 in Fig.2 is the bifurcation curve of tori collision: attractor and repeller, represented by 
two invariant curves, approach one another, collide, and disappear. The top border is the bifurcation 
curve of torus doubling: instead of one attractive invariant curve attractor appears consisting of two 
closely placed curves; after the bifurcation they move one off another.  

Let us start at ε=0, λ=–0.25 and go in the parameter plane along the torus collision bifurcation 
curve increasing ε. The situation of collision of smooth invariant curves takes place while the mo-
tion is confined on one side of the logistic parabola. At some value of ε the invariant curve at the 
bifurcation threshold touches the extremum, x=0, and in accordance with argumentation of 
Ref.[16], it corresponds to the terminal point of the bifurcation line. This is critical situation of par-
ticular interest, the TCT critical point (TCT stands for ‘torus collision terminal’) [16]: 
 =–0.09977122895…, TCTλ TCTε =1.01105609099…. (9) 

Now, let us start at ε=0, λ=0.75 and move along the torus-doubling bifurcation curve. As in the 
previous case, this bifurcation of smooth invariant curve takes place only while the whole curve is 
placed on one side of the logistic parabola. At some value of ε the invariant curve at the bifurcation 
threshold touches the extremum, x=0, and the torus-doubling bifurcation line is terminated. This is 
the TDT critical point (TDT stands for ‘torus-doubling terminal’) [15]:  
 =1.158096856726…, TDTλ TDTε =0.360248020507…. (10) 

TCT and TDT critical point were found also in quasiperiodically forced circle map 
 )1(mod2cos2sin)2(1 nwxKrxx nnn πε+ππ−+=+  (11) 
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in the supercritical case K>1 (near the extrema it looks locally like the logistic map). In some re-
spects, this is a more convenient object for detailed study: no divergence can occur in this map be-
cause the variable x is defined modulo 1.  

Figure 3 presents a chart of dynamical regimes for the driven circle map on a part of the pa-
rameter plane (b, ε) including the TCT critical point [16]. Separately, two rectangular fragments of 
the chart are shown together with phase portraits of attractors at representative points. 

The large gray domain in the diagram corresponds to existence of the localized torus attractor. 
The right border of this domain is the bifurcation curve of bifurcation of collision of a pair of 
smooth tori, one stable and another unstable. After the event, both of them disappear, and intermit-
tent regime arises, with long-time travel of the orbits through the region of former existence of at-
tractor and repeller (the ‘channel’). Going along the bifurcation curve we observe that the semi-
attractive invariant curve, formed at the moment of collision of stable and unstable tori, grows in 
size, and ultimately touches the minimum of the map; there we arrive to the TCT point. As found 
numerically, it is located at  
 ...132566321.0...,377866239.0 =ε= TCTTCTr . (12) 

Another, upper border of the gray area corresponds to a situation when the stable and unstable 
invariant curves touch each other, but do not coincide. This means that at least one of the curves 
must be non-smooth (‘fractal torus’). From the figure one can see that both bifurcation lines of 
smooth and fractal tori-collision meet at the TCT critical point.  

It was observed that fractalization of torus and transition to SNA in the forced circle map is 
possible also in the critical and subcritial domain ( 1≤K ) [29,30]. This transition can not be associ-
ated with the TDT or TCT points because of absence of the quadratic exterema. Its nature was re-
vealed in Ref. [19] as linked with the torus fractalization at the intermittency threshold. To describe 
the phenomenon it was convenient to use a model 

 wnbxfx nn πε++=+ 2cos)(1 , (13) 

where was defined as )(xf

 
⎩
⎨
⎧

>−
≤−

=
75.0,329
75.0,)1(

)(
xx
xxx

xf  (14) 

One branch of the mapping is selected in a form of the fractional-linear function, )1( xx − , which 
naturally appears in analysis of dynamics near tangent bifurcation associated with intermittency 
(e.g. [31-34]). The other branch is attached somewhat arbitrarily to ensure presence of the ‘re-
injection mechanism’ in the dynamics and to exclude divergence.  

Figure 4 shows a chart of dynamical regimes for the model (13). The white area designates 
chaotic regime with positive Lyapunov exponent Λ. Gray regions correspond to negative Λ. In the 
bottom gray area attractor is localized and represented by a smooth torus. The upper border of this 
region is the bifurcation curve of transition to delocalized attractor via intermittency. The bifurca-
tion consists in collision of smooth stable and unstable tori with their coincidence, and the Lyapu-
nov exponent at the bifurcation is zero. In the right part of the diagram the bifurcation curve 
separates regimes of torus and SNA. The bifurcation corresponds to fractal collision of two invari-
ant curves at some exceptional set of points, and the Lyapunov exponent at the bifurcation is nega-
tive. These two parts of the bifurcation border are separated by the critical point of torus fractaliza-
tion (TF) that is located at 
 εTF=2, bTF=−0.597515185376121… (15) 

3. The classic GM critical point  
Critical behavior in the circle map associated with break-up of the golden-mean quasiperiodic-

ity (GM critical point) was discovered first by Shenker [21] and studied in terms of RG analysis by 
Feigenbaum–Kadanoff–Shenker and Ostlund et al. [10-12]. Although the circle map is one-
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dimensional, it may be treated in terms of our general scheme, as a particular case of (1). We con-
sider two decoupled maps 

 6

) 1(mod),( 11 wuuxfx nnnn +== ++ , (16) 

with xKrxxf ππ−+= 2sin)2()( . The function is independent of the second argument u, so, the 
GM criticality will correspond to a degenerate fixed point of our functional equation: 

. In this case Eq.(4) yields )(),( xGuxgk ≡

 ))(()( 12 ααα= − xGGxG , (17) 

the relation known as the Feigenbaum–Kadanoff–Shenker equation. It has been solved numerically 
(e.g. [10-12,35,36, 37, 9]), and the function is found in a form of high-precision expansion in pow-
ers of . The scaling constant is 3x

 α=–1.288574553954… (18) 

Accounting representation of the circle map in the form (16) it is natural to depict the critical 
attractor in coordinates (u, x) (Fig.5). Observe that it is represented by a fractal-like curve. Locally, 
the basic scaling property of this fractal may be deduced from the RG analysis. Indeed, the evolu-
tion operators for time intervals increasing as Fibonacci numbers become identical, up to the scale 
change. For each next Fibonacci number the variables x and u are rescaled by α and . As 
follows, attractor in coordinates (u, x) must possess self-similarity: increasing resolution by factors 
α and β along the vertical and the horizontal axes, respectively, one should observe the similar 
structures (see bottom panels of Fig.5).  

1−−=β w

For perturbations of the GM fixed-point, which do not violate the unidirectional nature of the 
master-slave coupling, the equation (5) accepts the form 

 ))(()())(()( 1212 ααα+ααα′αδ=δ −− xGxhxGGxh . (19) 

As found (e.g. Refs. [10-12,35,36, 37, 9]), there are two relevant eigenvalues,  

 ...8336106559.21 −=δ  and ...660424381.12
2 =α=δ . (20) 

These are the constants responsible for the scaling properties of the parameter space structure near 
the GM critical point. However, to demonstrate them we need to define a special local coordinate 
system near the critical point – the scaling coordinates. (The same will be necessary for other types 
of criticality, see sections 4-6.) As argued in Refs.[37,9], this is a curvilinear system: one coordinate 
line goes along the critical line k=1, and another along the curve of constant rotational number. 
Numerically, the relation of new coordinates ( ) with parameters of the original map is ex-
pressed as 

21,CC

  (21) .,00148.001749.0 2
2
221 ckkcccrr cc +=−−+=

In these relations we account terms up to the second order because of the relation between δ1 and 
δ2:  and , but  (see Refs. [13, 16-19, 37] for explanation of the rules for se-
lection of the scaling coordinates). Figure 6 shows a chart of dynamical regimes with Arnold 
tongues and a sequence of fragments for several steps of magnification in the scaling coordinates. 
Observe excellent repetition of the two-dimensional arrangement of the tongues at subsequent lev-
els of resolution.  

12 δ<δ 2
12 δ<δ 3

12 δ>δ

4. Critical point TCT 
RG analysis of the torus-collision terminal point was developed in Ref.[16]. The critical behav-

ior of this type was found in the forced logistic map (8) and in the forced supercritical circle map 
(11). Here we prefer to deal with the last one because divergence of iterations is excluded in this 
case. The equation may be written as 



 
),1(mod

),1(mod)2cos(2sin)2(

1

1

wuu
uxKrxx

nn

nnn

+=
πε+ππ−+=

+

+  (22) 

and parameter K is supposed to be supercritical and fixed, K=2.5. As mentioned in Sec.2, the TCT 
point is located at . )132566321.0,377866239.0(),( =ε TCTr

In the RG approach, the TCT point is associated with a fixed-point solution of the functional 
equation (4). This circumstance was checked accurately in numerical procedure based on iterations 
of the RG transformation (4). Also the multi-dimensional Newton technique was used to solve the 
fixed-point equation in respect to the coefficients of polynomial expansion of the universal function 
in an appropriately chosen domain in the (u,x) plane (see [16] for details). The scaling constant α 
was found in the course of the computations, so 
 α=1.7109605… and β=−w−1=1.6180339… (23) 

As seen from Fig.7, the critical attractor in coordinates (u, x) is represented by a non-smooth 
fractal-like curve. To observe scaling, we need to select properly the origin of local coordinate sys-
tem (the ‘scaling center’). As found in Ref. [16], it is located at  

  and 284109286.0=cu 184505060.01arctan)2( 21 =−π= − Kxc . (24) 

Now, if we rescale  and cxxx −=∆ cuuu −=∆  by factors α and 1−−=β w , respectively, the dy-
namical regimes remain of the same kind, but with rescaling of time by factor . The invariant 
curve also must be invariant under this transformation. Indeed, the picture inside a selected box in 
Fig.7 reproduces itself under subsequent magnifications (with inversion in respect to the phase vari-
able, due to the negative β). This scaling property implies that locally the behavior of the invariant 
curve obeys 

1−w

γ∆∝∆ ux  with 117.1loglog ≅βα=γ . The power γ is close to one, so visually the 
curve looks like broken at the point of singularity. Due to ergodicity ensured by irrationality of the 
frequency, the singularity at the origin implies existence of the same type of singularities over the 
whole invariant curve, in a dense set of points. Note that γ>1. It means that the singularity is weak: 
the invariant curve, apparently, remains differentiable, but not twice differentiable.  

The next step is analysis of the linearized RG equation and of the corresponding eigenvalue 
problem (5). Numerical solution of the functional equation with substitution of g(x,u) and constant 
α associated with the TCT criticality was performed with approximation of the eigenfunctions via 
finite power expansions in respect to x and u. As found, two eigenvalues are relevant:  
  and ...600810.31 =δ ...828329.12 =δ  (25) 

These are scaling factors determining self-similarity of topography in a vicinity of the TCT 
point. To demonstrate the scaling property we define scaling coordinates in the parameter plane. 
Note that  and , but . So, we account terms up to the second order in the pa-
rameter change. As suggested in Ref.[16] it may be chosen as 

12 δ<δ 2
12 δ<δ 3

12 δ>δ

  (26) 2
2
221 ,047.23121848.0 ccccrr cc +ε=ε−−+=

Figure 8 shows a fragment of the chart of dynamical regimes near the TCT point for the forced cir-
cle map. Note similarity of the configurations represented in scaling coordinates.  

5. Critical point TDT 
Let us turn now to the RG results relating to the torus-doubling terminal point [15,38,39]. The basic 
illustrative example will be the forced logistic map that may be rewritten as  
 )1(mod,2cos 1

2
1 wuuuxx nnnnn +=πε+−λ= ++  (27) 

As noted in Sec.2, the TDT point is located at )360248020.0,158096856.1(),( =ελ TDT . 
It was found in Refs.[15,38] that the TDT point is associated with a period-3 cycle of the RG 

equation (4): . To find this period-3 solution with high ),(),(),(),( 1321 uxguxguxguxg →→→
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}
precision a numerical procedure was developed, the result was a representation of functional pair 

 in a form of polynomial expansion over the arguments x and u (see the table of 
coefficients in [38]). The rescaling constant is α=1.58259341… 
{ ),(),,( 21 uxguxg

In coordinates (u, x) the critical attractor looks like a fractal curve (Fig.9). To observe scaling, 
the origin of the coordinate system must be placed at the ‘scaling center’ [15,38] 
  and 3952188264.0=cu 0=cx . (28) 

Due to the period-3 nature of the solution of the RG equation, observation of self-similarity of the 
critical attractor requires using the scaling factors 
 =3.96376647… and =−4.23606798…. (29) 3α 3β

If we rescale x  and cuuu −=∆  by α3 and β3, respectively, the dynamical regimes remain of the 
same kind, but with characteristic time rescaled by . The curve representing the attractor must 
be invariant under this transformation, and this is indeed the case, see Fig.9. The picture inside a 
selected box reproduces itself under subsequent magnifications. Locally the invariant curve behaves 
as 

3−w

γ∆∝ ux  with 954.0loglog ≅βα=γ . The exponent is close to one, so the curve looks like 
broken at the point of singularity. Due to ergodicity of the quasiperiodic motion, the singularity at 
the origin implies presence of the same type of singularities in a dense set of points over the whole 
invariant curve. 

Because of the period-3 nature of the solution, analysis of the linearized RG equation is more 
complicated than for a fixed point. The eigenvalue problem reads 

).),,((),()),,((),(

),),,((),()),,((),(

),),,((),()),,((),(

2
3

1
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2
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2
3

1
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1
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1
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1
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wuwuwxghuwxhwuwuwxgguxh

wuwuwxghuwxhwuwuwxgguxh

wuwuwxghuwxhwuwuwxgguxh

+−ααα+−α+−αα′αδ=δ

+−ααα+−α+−αα′αδ=δ

+−ααδα+−α+−αα′αδ=δ

−−

−−

−−

 (30) 

Numerical solution of this problem with substitution of g1,2,3(x,u) and α associated with the TDT 
criticality yields two relevant eigenvalues [15,38]:  

  and ...5029.101 =δ ...1881.52 =δ  (31) 
To demonstrate scaling property in the parameter plane we need to define appropriate ‘scaling 

coordinates’. In the present case  and  for m=2,3,… It means that a linear parameter 
change is sufficient. According to Refs.[15,38], it may be chosen as 

12 δ<δ m
12 δ>δ

 212 3347.0, ccc TDTTDT +−ε=ε+λ=λ  (32) 
Figure 10 shows a chart of dynamical regimes near the TDT in scaling coordinates for several steps 
of subsequent magnification.  

6. Critical point TF 
The transition from localized to delocalized attractor in the model map (13) is accompanied by 

appearance of intermittent regimes. While we are close to the point of bifurcation, the laminar 
stages of dynamics occupy an overwhelming part of observation time (like in the case of the usual 
Pomeau-Manneville intermittency). They correspond to dynamics on the left branch of the map 
(13). To study details of the transition we may concentrate on the laminar stages and consider a 
simplified map [19] 
 )1(mod)),(2cos()1( 11 wuuunwbxxx nnnnn +=+πε++−= ++ . (33) 

As explained in Sec.2, the bifurcation border in the plane (ε, b) contains a critical point TF separat-
ing situations of smooth and fractal tori collision at )597515185.0,2(),( −=ε TFb . 

An important note is that due to the fractional-linear nature of the map the functions obtained at 
subsequent steps of the RG transformation (4) will be fractional-linear too. The same is true for the 



fixed-point of the RG equation, associated with the TF critical point. It implies that we may search 
for the fixed-point solution in a form.  
 ( ) ( ))()()()(),( udxucubxuauxg ++= , (34) 
where a, b, c, d are some functions of u. Without loss of generality we require them to satisfy to ad-
ditional conditions 1)()()()( ≡− ucubudua  and 1)0( =c . Substituting (34) into (4) we arrive at the 
fixed-point RG equation in terms of the functions a, b, c, d: 

  (35) .
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The solution  was found numerically, the coefficients of polynomial expansions for a(u), b(u), c(u), 
d(u) are listed in Ref. [19]. The factor α was also computed, so 
 ...890053525.2=α  and β=−w−1=1.6180339…. (36) 

These two constants determine scaling properties of the critical attractor on the (x, u)-plane. In fact, 
the variable x in the RG equation and in the original map are not the same: we need to introduce 
‘scaling coordinates’ in the (x, u)-plane. As found numerically [19], the variable change looks like 

 . (37) uUuuxX =−++∝ ,629.21092667.534719526.2 2

Figure 11 illustrates scaling property of the critical atttractor. Observe excellent reproduction of de-
tails of the structure in scaling coordinates (X,u).  

Numerical solution of the eigenvalue problem (5) for the fractional-linear fixed point reveals 
two relevant eigenvalues  
  (38) ...618033979.1and...272989134.3 1

21 ==δ=δ −w
responsible for scaling properties of the parameter space near the critical point. If we depart from 
the critical point along the bifurcation curve of the attractor-repeller collision, the first eigenvector 
does not contribute, the relevant perturbations is associated with 2δ . If we choose a transversal di-
rection, say, along the axis b, the perturbation of the first kind appears.  

In the case under consideration we have 21 δ>δ  and 2
21 δ>δ , but , so quadratic terms 

must be taken into account in the parameter change; the scaling coordinates (C

3
21 δ<δ
1, C2) are linked with 

parameters of the original map as  
 . (39)  2

2
221 2,33692.064938.0 CCCСbb TF +=ε−−+=

To illustrate scaling associated with nontrivial constant δ1 let us consider duration of laminar phases 
in a course of the intermittent dynamics generated by the map (33). In usual Pomeau – Manneville 
intermittency of type I the average duration of the laminar stages behaves as ν∆∝ bt lam  with 
ν=0.5 [31-34]. In presence of the quasiperiodic force the same law is valid in the subcritical region, 
ε<2. In the critical case ε=2 the exponent is distinct. Indeed, as follows from the RG results, to ob-
serve increase of characteristic time scale by factor  we have to decrease a shift of 
parameter b from the bifurcation threshold by factor δ

61803.11 ==θ −w
1=3.13427. As follows, the exponent must be 

42123.0loglog 1 ≅δθ=ν . Figure 12 shows data of numerical experiments with the fractional-
linear map. At each fixed ε an average duration of passage through the 'channel' near the formerly 
existed attractor-repeller pair was computed in dependence on ∆b for ensemble of orbits with ran-
dom initial conditions. Results are plotted in the double logarithmic scale. For particular ε=1.7 
(subcritical) and 2 (critical) the dependencies fit the straight lines of a definite slope, estimated as 
0.508 and 0.424, in good agreement with the theory. At subcritical ε slightly less than 2 one can ob-
serve a 'crossover' phenomenon, that is the slope change from critical to subcritical value at some 
intermediate value of ∆b. 

 9



 10

7. Conclusion 
The present paper was devoted to a review of critical situations at the onset of chaotic or strange 
nonchaotic behavior via quasiperiodicity, more concretely, in the case of the golden-mean ratio of 
the basic frequencies. We have derived a two-dimensional generalization of the Feigenbaum-
Kadanoff-Shenker RG equation and demonstrate that it may be used to treat from the common point 
of view a number of critical situations, the conventional golden-mean criticality (GM), and the criti-
cal situations in quasiperiodically driven model maps: torus collision terminal (TCT), torus-
doubling terminal (TDT), and torus fractalization at the intermittecy threshold (TF). All these criti-
cal situations are of obvious interest for a problem of synchronization in nonlinear systems, in con-
text of study of transitions associated with break-up or other bifurcations of complex generalized 
synchronous regimes. In perspective, it would be interesting to reveal details and regularities of co-
existence and subordination of all the types of critical behavior. 

As is common in situations allowing the RG analysis, one can expect that the quantitative regu-
larities intrinsic to our model maps will be valid also in other systems relating to the same univer-
sality classes. It would be significant to find this type of behavior in systems of higher dimension, 
for example, in quasiperiodically driven invertible 2D maps, which could represent Poincare maps 
of some flow systems. It would be interesting to arrange special experiments on search and observa-
tion of the considered types of critical behavior. Since now, only two of them, GM and TDT critical 
behavior, were observed experimentally (see e.g. [40,28, 41,38,39]).  

I thank U.Feudel, E.Neumann, A.P.Kuznetsov, A.Pikovsky, and I.Sataev for fruitful collabora-
tion, discussions, and valuable help during a work on different parts of the present research.  
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Fig.1. Chart of dynamical regimes on the parameter plane of the circle map. Numbers inside Arnold tongues in-

dicate the respective rotation numbers. 

 
Fig.2. Chart of dynamical regimes on the parameter plane of quasiperiodically drivel logistic map (8) 
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Fig.3. Сhart of dynamical regimes on the parameter plane (b, ε) (а) and two enlarged frag-
ments with phase portraits of attractors on phase plane (u,x) at representative points. 
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Fig.4. Chart of dynamical regimes for the model (13). 
The bottom gray area corresponds to localized attractor 
represented by smooth torus. The upper border is the 
bifurcation curve of the intermittent transition. In the 
left part the bifurcation consists in collision of smooth 
stable and unstable tori with their coincidence, in the 
right part – to fractal collision at some exceptional set 
of points. White area designates chaos, and dark gray 
presumably corresponds to SNA. Sign of the Lyapunov 
exponent Λ is indicated in all three domains. 

 

Fig.5. Attractor of the two-dimensional map (16) at the GM critical point (top panel) and illustration of the basic 
local scaling property: the structure reproduces itself under magnification with factors α=–1.28857… and β=–
1.61803… along the vertical and the horizontal axes, respectively.  
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Fig.6. Chart of dynamical regimes on the parameter plane of the sine circle map and a sequence of fragments for 
several steps of magnification of vicinity of the GM critical point in the scaling coordinates, with factors δ1 and 
δ2 along horizontal and vertical axes, respectively. 

 

Fig.7. Attractor of the forced circle map at the TCT critical point (the left panel) and illustration of the basic local 
scaling property: the structure reproduces itself under magnification with factors α=1.71096… and β=–
1.61803… along the vertical and the horizontal axes, respectively. 
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Fig.8. Chart of dynamical regimes on the parameter plane of the quasiperiodically driven supercritical circle map 
and a sequence of fragments for several steps of magnification of a vicinity of the TCT critical point in the scal-
ing coordinates, with factors δ1 and δ2 along horizontal and vertical axes, respectively. Gray area corresponds to 
localized attractor with negative Lyapunov exponent, and white to chaos. 
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Fig.9. Attractor of the forced logistic map at the TDT critical point (the left panel) and illustration of the basic 
local scaling property: the structure reproduces itself under magnification with factors α3=3.96376… and β3=–
4.2360… along the vertical and the horizontal axes, respectively. 
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Fig.10. Chart of dynamical regimes on the parameter plane of the quasiperiodically driven logistic map and a 
sequence of fragments for several steps of magnification of a vicinity of the TDT critical point in the scaling co-
ordinates, with factors δ1 and δ2 along horizontal and vertical axes, respectively. Gray area corresponds to local-
ized attractor with negative Lyapunov exponent, and white to chaos.  

 

Fig.11. Attractor of the forced fractional-linear map at the TF critical point (the left panel) and illustration of the 
basic local scaling property: the structure depicted in scaling coordinates reproduces itself under magnification 
with factors α=2.89005… and β=–1.618034… along the vertical and the horizontal axes, respectively. 
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Fig.12. Data of numerical experiments with the 
fractional-linear map: average duration of pas-
sage through the 'channel' versus deflection 
from the bifurcation threshold for three values 
of ε in the double logarithmic scale. Observe a 
'crossover' phenomenon, the slope change from 
critical to subcritical value at some intermedi-
ate value of ∆b for ε=1.95. 
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