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Noise-induced absolute instability
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Abstract

Noise-induced absolute instability is demonstrated in computer experiments with a one-dimensional reaction–
diffusion system. This phenomenon may occur in spatially extended flow systems of different nature, when the
parameters are chosen close to the point of transition from convective to absolute instability. © 2002 IMACS.
Published by Elsevier Science B.V. All rights reserved.
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Studies of the effect of noise on bifurcations in non-linear dynamical systems have a long history
[1]. For low-dimensional systems, this is now a well-established field, embracing such phenomena
as noise-induced transitions, bifurcation precursors, and chaotic band merging (see, e.g. [2] for refer-
ences and discussion). In particular, Crutchfield et al. [3] have shown how a gap of unobservable states
develops in the period-doubling transition to chaos, and how the presence of noise obliterates the detailed
structure in the invariant density. Scaling theories for the transition to chaos in the presence of noise have
been worked out, e.g. by Crutchfield et al. [4] and by Shraiman et al. [5].

Less is known about noise-induced phenomena for non-equilibrium transitions in spatially extended
systems (see, e.g. Cross and Hohenberg [6], Hohenberg and Swift [7], and Ahlers et al. [8] for a review
and further references).

Formation of noise-stimulated patterns in a convectively unstable distributed system was studied,
in particular, by Deissler [9,10] and Deissler and Farmer [11]. They considered the Ginzburg–Landau
equation with flow and argued that the reason for the appearance of intermittent turbulent states, or
coherent non-linear patterns, is that the system acts as a deterministic frequency-selective amplifier of
noise from microscopic magnitude up to a level of relevant non-linearity. An analogous interpretation
of pattern formation in reaction–diffusion systems with noise was suggested by Borckmans et al. [12].
In view of extreme sensitivity of the convectively unstable state to perturbations, the authors conclude
that wave-patterns may be generated and sustained due to amplification of fluctuations from an upstream
noise source. Similar problems were also studied in significant detail in connection with the so-called
acousto-electric effect [13–15]. On the other hand, in recent works of Landa [16,17], the onset of turbulence
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in flow systems is treated as a kind of noise-induced transition. This appears to suggest a more subtle
interplay between fluctuations and dynamics than a straightforward amplification of noise.

Let us recall that an instability in a spatially extended system is termedabsolute if a localized initial
perturbation gives rise to growth of the amplitude observed at any fixed point in space. The instability is
calledconvective if the growing perturbation drifts in such a way that observation at a fixed point in space
exhibits a final decay of the amplitude to zero. The aim of this article is to show that near the threshold of
a change of the instability from convective to absolute a specific kind of noise-induced transition in the
open flow may occur.

In a previous publication [18], we presented an analysis of convective and absolute instabilities in a
one-dimensional Brusselator flow model. The transition from one type of instability to another occurs at
some critical flow rate, which depends on other parameters of the system. The transition is associated
with a change in the direction of propagation of a front, which separates an undisturbed region upstream
from a region with large amplitude of oscillations downstream. For flow rates below the critical valuec0,
the front moves against the flow, and in the final state the whole volume of the system will be occupied
by the oscillating patterns. For flow rates abovec0, the front is advected downstream and finally leaves
the reactor space; then the system remains in a non-excited steady-state. The transition, which occurs at
c = c0, combines properties intrinsic to soft and hard bifurcations: it is abrupt (i.e. the amplitude jumps
from a large level to zero, or vice versa, when the flow ratec is slowly changed), but reversible [18,19].
Such a transition may obviously exhibit unusual peculiarities with respect to the influence of random
fluctuations.

Let us discuss the effect of noise on this transition in the Brusselator flow model. (It may be hoped
that the analysis is of common significance for different systems with convective or absolute instability
in dependence on the direction of front propagation. Indeed, all relevant properties of the transition are
linked just with the noise-induced motion of the front.)

In dimensionless variables the one-dimensional Brusselator flow model is governed by the following
equations [18,20].

Ut + cUx = A − BU − U + U2V + σUxx, Vt + cVx = BU − U2V + Vxx (1)

The chemical reactants are supposed to be supplied to one end of a lengthy reactor and flow down the
reactor fromx = 0 toL at a speedc. The dynamic variablesU(x, t) andV (x, t) describe concentrations
for two interacting chemical species, andσ is the ratio of the diffusion constants for these reagents.A

andB stand for two other species presented in excess and are considered as parameters.
The kinetic Eq. (1) provide for a single spatially uniform stationary solution of the formU = A and

V = B/A. Depending onA andB this solution may exhibit a Hopf bifurcation (leading to temporal
oscillations) or a Turing bifurcation (producing spatial structures), and both of these instabilities may
be either convective or absolute [18]. Fig. 1 shows the spatio-temporal dynamics of the model near the
threshold of the absolute instability. Here, the system is started with an initial perturbation in the middle of
the reactor, and noise-free equilibrium boundary conditionsU |x=0 = A andV |x=0 = B/A are imposed
at the upstream (left) end. A standard finite-difference method of the second order was used to obtain the
numerical solution to the partial differential Eq. (1).

At the parametersA = 1.5, B = 3.414392, andσ = 0.25, which correspond to Fig. 1, the critical
velocity is c0 = 0.9. Forc < c0 the Turing instability is absolute, and the front moves to the left. Its
final stabilization at the upstream end of the reactor is clearly caused by the boundary conditions. For
c > c0 the instability is convective, the front moves to the right, and after a while it will leave the reactor
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Fig. 1. Space–time diagrams for the Brusselator model of different flow rates: (a) absolute instability of Turing type forc < c0;
(b) threshold of the absolute instabilityc = c0 and (c) convective instability (c > c0). Grey tones indicate levels of the variable
U (A = 1.5; B = 3.414392;σ = 0.25 andL = 40).

space. At the critical flow rate,c = c0, there is a kind of neutral stability: A front can be maintained
near the middle of the reactor and stay there for a very long time. In the active region to the right of the
front, observation at any specific point reveals in this case temporal oscillations of a periodT ∼= 4.2 as
subsequent Turing stripes pass by with the flow.

To estimate carefully the current location of the front the following procedure is suitable. While per-
forming the numerical integration of Eq. (1) over one full time-periodT , the maximum value ofU(x, t)

is estimated at each point in space to obtain the envelope function

W(x) = max(U(x, t)), t ∈ (kT, (k + 1)T ). (2)

The position in space, where this envelope function assumes some definite intermediate valuew0, is
regarded as the front position. Now one can study the motion of the front in discrete timek.

Here we come to the main point of the study. Let us introduce a noise source at the upstream end of
the reactor. For the present investigation, the concrete nature of this noise will be not essential. In the
discussed numerical experiments a random, non-correlated perturbation to the input value ofU was added
at each time step of integration. The amplitude of the perturbation was taken to be uniformly distributed
from −ε/2 to ε/2.

Fig. 2 shows the spatio-temporal behavior of the envelope function for different values of the flow rate
in the presence of an upstream noise source. The different grey tones correspond to different intervals for
w(x), with fully developed wave patterns in the white zones to the right.

As one might expect, for a finite input noise the numerical simulations demonstrate that oscillatory
wave patterns appear in the downstream part of the system, both forc slightly below and slightly above
the threshold. Moreover, although fluctuating, the position of the front stabilizes inside the reactor even
for c > c0.
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Fig. 2. Space–time diagrams for the Brusselator flow model in the presence of input noise. Grey tones indicate levels of the
envelope function forU . Observe that the effect of noise can stabilize a front in the case of a convective instability (c = 0.93).
Interval of the dimensionless time shown on each diagram is from 0 to 1764. Input noise is of a fixed level,ε = 0.0005. It is
added at each time step (�t = 0.042) as a random shift ofU , at the input of the flow system:U(0, n�t) = A + εξ/2, whereξ
is a random variable distributed uniformly from−0.5 to 0.5.

At this point of the analysis, the nature of the large amplitude oscillations in the white zone observed
for c > c0, is still not obvious (Fig. 2). Should we regard them simply as amplified noise, or are they
the result of some noise-induced transition in the system? To clarify this point let us turn to additional
numerical experiments.

Suppose first that the flow rate corresponds precisely to the threshold of absolute instability, and that the
front is located somewhere inside the reaction space (sufficiently far from both ends). Having integrated
Eq. (1) over one full time period of the oscillations we may estimate the new location of the front and
find its displacement�xk. Then we shift the complete pattern(U(x, (k + 1)T ), V (x, (k + 1)T )) to
restore the initial position of the front and hereafter repeat the same procedure, time period after time
period. In this way we may define a virtual front positionX = ∑

�xk as the accumulated front shift.
Obviously, with this procedure the fluctuations that impinge on the front act like a stationary random
process.

Now the question is: How will the front coordinateX evolve in time at the critical flow ratec = c0?
Intuitively, one might expect that by virtue of the neutral character of the stability, the motion of the front
would be a random walk without any preferred direction. However, this is not the case. In the numerical
experiments it is clearly observed that a directed motion of the front takes place, and the direction of
motion corresponds to accumulated shifts towards the noise source (i.e. against the flow). Hence, to
restore the condition of neutral stability in the presence of noise one must increase the flow rate. This is
illustrated in Fig. 3: the virtual coordinate of the front is plotted as a function of time for different noise
amplitudes. A closer analysis demonstrates that the front velocity is proportional to the square root of
the noise amplitudeε. This amplitude dependence underlines the non-linear and statistical nature of the
phenomenon.
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Fig. 3. Noise-induced drift of the fictive front coordinateX (see text) at the threshold of absolute instability (c = 0.9). Panel
(a) presents the front position as a function of time for different levels of the input noise. Curves 1–5 correspond toε = 0.001,
0.0005, 0.00025, 0.000125, 0.0000625, respectively. Panel (b) gives evidence of a linear dependence of the induced front velocity
V on the square root of noise amplitudeε.

As previously noted, the strong sensitivity of the system to small amplitude noise arises because the
noise signals are amplified as they are advected along with the flow. As a consequence, the effect of noise
on the front dynamics is expected to increase with the distance between the noise source and the front.
Such a dependence is indeed observed (see Fig. 4).

Fig. 5 shows the frequency characteristics for the amplification of a small amplitude Fourier component
superimposed onto the convectively unstable, homogeneous state. Here,c = 0.93, and the distance from

Fig. 4. Noise-induced drift of the fictive front coordinateX at the threshold of absolute instability (c = 0.9). Curves 1–3
correspond to different distances of the noise source from the front, 28.7, 23.7, and 18.7, respectively. The parameter of the noise
intensity is fixed (ε = 0.0005).
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Fig. 5. GainG = 20log(Uout/Uin) vs. frequency for Eq. (1) linearized near the convectively unstable equilibrium state,A = 1.5,
B = 3.414392,σ = 0.25, andc = 0.93. Note the sharp peak at the frequency where the absolute instability will appear for
slightly lower values ofc.

the source to the observation point isL0 = 10. Near the threshold of absolute instability, the amplification
in the system is highly selective. The gain curve has a sharp peak at a frequencyf where the instability
is going to appear. Let us assume that the front is far from the input end of the system. Then the noise,
which effects the front dynamics, will have a very narrow frequency spectrum. In other words, the noise
is characterized by a slowly decaying oscillatory tail of its correlation function.

To demonstrate significance of the long time correlations, another series of computer experiments was
performed. A localized source of correlated noise was placed close to the front, and the induced virtual
front velocity was determined in dependence of the correlation time (with a fixed mean square value of the
amplitude of the noise source). For uncorrelated noise only a small random walk of the front coordinateX

takes place. On the other hand, for correlated noise a directed motion is observed, and the mean velocity
〈V 〉 grows with the correlation time (Fig. 6).

Fig. 6. Noise-induced drift of the fictive front coordinateX in the case of a correlated noise source located close to the front.
The spectrum of the noise source is Lorentzian with central frequency 2π/T , T = 4.2. The spectral width is determined by the
correlation timetc, and curves 1–4 correspond totc/T = 10, 5, 0.5, and 0.01, respectively.
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Based on these observations, we propose the following qualitative picture of the phenomenon that may
be referred to as thenoise-induced absolute instability.

First, let us consider instead of noise an input perturbation in a form of a wave-packet of mean frequency
f0. When the leading end of the wave-packet reaches the front, it may shift the front forth or back,
depending on the phase relation between the incoming signal and the internally generated oscillations.
However, gradually, while the packet arrives, the two phases will be tuned to one another (due to non-linear
synchronization effects and due to the fact that perturbations arriving with the flow serve as priming for
the front). Hence, the wave-packet will gradually interact with the front in a favorable phase, and if the
duration of the packet is long enough, the final result will be a shift in the front towards the source.

In the case of a noise input, the fluctuations become narrow-band (or long-time correlated) as they
are advected with the flow. Hence, the influence on the front may be regarded as the action of a random
superposition of wave-packets, and the average effect will be a directed drift of the front towards the noise
source. As the front approaches the source, the intensity of the impinging noise as well as its correlation
time decrease. Hence, the velocity of the directed drift also decreases, and finally, the front stops at some
finite distance from the noise source. Hereafter, it undergoes only random fluctuations near the mean
position, as observed in Fig. 2.

If the velocity of the flow is slightly above the critical valuec0, the instability in the noiseless system
is convective. In other words, the front propagates to the right and finally leaves the reaction space. In
accordance with the above findings, the situation with a front moving against the flow may be restored if
we introduce an input noise of sufficient magnitude. Then the spatio-temporal pattern characteristic for
the case of absolute instability reappears, although with inevitable fluctuations.

The same phenomenon of noise-induced absolute instability may occur in other types of spatially
extended flow systems as well. In particular, this concept may be useful for an initial understanding of
the onset of turbulence in hydrodynamic systems with open flows [16,17].
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