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Abstract

We consider reaction–diffusion instabilities in a flow reactor whose cross-section slowly expands with increasing longitudinal
coordinate (cone shaped reactor). Due to deceleration of the flow in this reactor, the instability is convective near the inlet to the
reactor and absolute at the downstream end. In sustained regimes the two regions are separated by a stationary front. Results of
numerical studies of the Brusselator flow model demonstrate that the front locking occurs at the place, where the flow velocity
approximately corresponds to that of the transition from convective to absolute instability in a spatially uniform system. 2002
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It is well known that instabilities in spatially uni-
form extended systems may be either convective or
absolute [1–3]. In the first case, any initially localized
perturbation, although growing, is advected with the
flow in such way that observation at any fixed spa-
tial point displays a decay of the perturbation to zero
(Fig. 1(a)). In the second case, observation at a fixed
point shows a growing perturbation that gradually oc-
cupies the whole spatial domain (Fig. 1(b)).
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A particular class of media demonstrating the
transition from convective to absolute instability is
represented by reaction–diffusion systems with flow
(Fig. 2(a)). If the flow rate is sufficiently high, the
instability is of convective type, whereas for low flow
rates the instability becomes absolute. The transition
from convective to absolute instability occurs at some
critical flow ratecca [4,5].

Let us consider a system with a flow velocity that
slowly decreases along the spatial coordinate. For a
fluid system such a condition may be realized by plac-
ing the flow inside a cone-shaped tube whose diam-
eter slowly expands with the longitudinal coordinate
(Fig. 2(b)). We may choose parameters in such a way
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Fig. 1. Evolution of a localized perturbation in the uniform flow system: (a) convective instability, (b) absolute instability.

Fig. 2. Geometry of the reactor in the case of uniform flow (a) and for the cone system (b).

that the velocity near the inlet to the reactor corre-
sponds to convective instability of a uniform flow,
while at the downstream end it corresponds to absolute
instability.

The transition from convective to absolute instabil-
ity in the uniform flow system is associated with a
change of direction of propagation for a front, that sep-
arates active and passive regions of the medium (see,
e.g., [4,5]). In our nonuniform system, the front drifts
along the flow being located in the domain of larger
flow velocity (near the inlet), and in the opposite di-
rection in the domain of slow velocity (near the down-
stream end). The stable position of the front is in the
vicinity of the pointxca where the flow velocity attains
the critical valuecca, that is, where the transition be-
tween convective and absolute instability occurs in the
uniform system.

As suggested, the configuration of the reactor may
easily be realized in practice, and it may provide
a useful tool for experimental studies of details of
the transition from convective to absolute instability.
Indeed, by performing measurements on the amplitude
distribution along the reactor, one can find the front
position and, hence, estimate the critical velocity of
the convective–absolute instability transition.

Let us now proceed by considering a concrete ex-
ample, namely the well-known Brusselator flow sys-

tem, for which we will present numerical results sup-
porting the outlined picture. The Brusselator is one
of the canonical models of reaction–diffusion sys-
tems [6]. In a one-dimensional flow of constant rate
the basic set of equations reads [5]

∂U

∂t
+ c

∂U

∂x
= A − (B + 1)U + U2V + σ

∂2U

∂x2 ,

(1)
∂V

∂t
+ c

∂V

∂x
= BU − U2V + ∂2V

∂x2 .

HereU andV denote dimensionless concentrations of
the interacting chemical species,A andB are exter-
nally controlled feed concentrations,c > 0 is the ve-
locity of flow, andσ > 0 is the ratio of the diffusion
constants for the componentsU andV . The reagents
are assumed to be pumped continuously into the reac-
tion space from the left, see Fig. 2(a). System (1) has
a homogeneous steady state

(2)U0 = A, V0 = B/A.

We suppose that the inlet concentrations correspond to
the homogeneous state,

(3)U |x=0 = U0, V |x=0 = V0,

and that the right boundary condition atx = L is free:

(4)
∂U

∂x

∣∣∣∣
x=L

= 0,
∂V

∂x

∣∣∣∣
x=L

= 0.
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As the control parameters are varied one can ob-
serve a loss of stability for the spatially homogeneous
state via a Hopf or via a Turing bifurcation [7]. The
Hopf instability is associated with the appearance of
spatially homogeneous oscillations. At fixed parame-
ter valuesA, σ , andc, the bifurcation value ofB for
instability of this type is

(5)BH = 1+ A2.

The Turing instability [8] manifests itself by the form-
ing of a spatial structure with some fixed characteris-
tic wavelength. This kind of instability can only ap-
pear when componentV diffuses faster thenU , i.e., at
σ < 1. If this condition for the diffusion rates is sat-
isfied, then the bifurcation value ofB for the Turing
instability is

(6)BT = (
1+A

√
σ

)2
.

Absolute and convective instabilities of Hopf and
Turing type in system (1) were studied in [5] via so-
called “pinch-point analysis”. The critical velocitycca
may be found from the equations linearized near the
homogeneous state for the variationsu = U − U0 and
v = V − V0. By means of exponential substitution
u,v ∝ exp(st + qx) the problem is reduced to the
analysis of some functions of complex variabless and
q (see [1–3,5] for details). The complex frequencys

and wave numberq obey the dispersion equation
(
s + cq − B + 1− σq2)(s + cq + A2 − q2)

(7)+AB2 = 0.

Let us designate the left-hand side byD(s, q), with
s = s(q) being the root of this quadratic equation.
Then, as shown in [5], the critical velocity together
with the complex unknownss andq must satisfy the
set of equations

(8)D(s, q) = 0, Re
(
∂s(q)/∂q

) = 0.

Actually, besides the true solutions, these equations
have some irrelevant spurious roots. To distinguish
those corresponding to the actual convective–absolute
transition one should either check the character of
spatio-temporal evolution in numerical experiments in
a vicinity of the found points, or perform some special
analysis of the analytical properties of the complex
roots of the dispersion equationD(s, q) = 0 [2,3,5].

When the instability is convective and the input
concentrations differ from the homogeneous values,
flow distributed oscillations appear that are spatially
undamped for sufficiently large flow rate. These oscil-
lations arise even if the Turing condition for the diffu-
sion rates is not fulfilled and, actually, represent a new
scenario for pattern formation in spatially distributed
systems [5,9,10]. This effect must be taken into ac-
count in the experimental observations of the absolute
and convective instabilities, because it can overshadow
the convective instability.

Now let us turn to the flow system in the cone
shaped reactor (Fig. 2(b)). To derive the respective
dynamical equations let us first transform Eqs. (1) to
three-dimensional form by means of the substitution

(9)c
∂

∂x
→ 	c∇,

∂2

∂x2 → ∇2,

where	c is the vector of the velocity. It is natural for
the conical geometry of the reactor (see Fig. 2(b)) to
rewrite the resulting equations in (nonstandard) spher-
ical coordinates

x = r cosθ, y = r sinθ cosφ,

z = r sinθ sinφ,

where ther-axis coincides with the axis of the cone
and its origin lies in the intersection point of the cone
wall continuation. To reduce the analysis to a one-
dimensional problem we assume thatU andV depend
only onr and the velocity vector	c is co-directed with
r-axis. To find the flow velocity as a function ofr one
can subdivide the reactor into a set of thin spherical
layers of equal volume. The mixture of reagents is re-
garded as an uncompressed fluid, so passage of each
layer must take equal time, and the velocity must com-
ply with

(10)c(x)= c0/(1+ ϕx)2.

Here c0 is the inlet velocity,ϕ = 1/r0 characterizes
the angle of the cone,r0 is the coordinate of the inlet,
x = r − r0. The final equations then take the following
form:

∂U

∂t
+

(
c0

(1+ ϕx)2
− 2σϕ

1+ ϕx

)
∂U

∂x

= A − (B + 1)U + U2V + σ
∂2U

∂x2 ,
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Fig. 3. Parameter plane of the uniform Brusselator flow system (1) (from [5]) (a) and spatio-temporal diagrams for the cone system,A = 1,
σ = 0.25, ϕ = 0.01 (b)–(d). The horizontal lines on the parameter plane correspond to the values ofB, at which the diagrams (b)–(d) are
drawn; the regions of distinct behavior are marked by letters (H and T denote the Hopf and Turing instability, A and C designate the absolute
and convective instability, symbol> shows what instability has larger linear increment). On the spatio-temporal diagrams (b)–(d) the gray
scales code the magnitude ofU . Small vertical segments mark the places of intersection of the horizontal lines with the domain boundaries on
the parameter plane diagram (a). The highest mark corresponds to the convective–absolute transition, i.e., the critical pointxca. The parameter
values areB = 2.38, c0 = 1 (b),B = 2.63, c0 = 1.5 (c),B = 2.85,c0 = 1.5 (d).

∂V

∂t
+

(
c0

(1+ ϕx)2
− 2ϕ

1+ ϕx

)
∂V

∂x

(11)= BU − U2V + ∂2V

∂x2 .

In the limit ϕ → 0 we obviously return to the uniform
system (1).

To solve the set of partial differential equations (1)
and (11) we used an implicit finite-difference method
of second order [11]. Typical values of the space
and time discretization are around 0.1. Figs. 3 and 4
present diagrams illustrating spatio-temporal evolu-
tion of patterns in the flow system in the cone reac-
tor with ϕ = 0.01 for some particular values ofA and
σ (see the figure captions). The first set of diagrams
corresponds to the situation with the Hopf instability,
and the second to the Turing instability. The spatio-
temporal diagrams give evidence to the phenomenon
of the wave front locking. Observe that no waves are
present near the reactor inlet. The oscillations occur

to the right of some definite place, and the spatial lo-
cation of the transition depends on parameters of the
system.

In Figs. 3(a) and 4(a) we reproduce the charts of the
parameter plane(c,B) found in [5] for the uniform
system. In the cone system (11), the flow velocity
varies from one cross-section of the reactor to another.
This means that each of the spatio-temporal diagrams
can be associated with some horizontal line on the
parameter plane of Figs. 3(a) and 4(a).

As expected, the place of the front locking must
correspond to the point, where the local velocity of the
flow is equal to the critical value of the convective–
absolute instability transition in the uniform system.

On the spatio-temporal diagrams small vertical seg-
ments are shown that mark points where the local flow
velocity corresponds to the intersection of the horizon-
tal lines with the bifurcation borders in the parame-
ter plane. The largest mark designates the threshold
of the absolute–convective instability transition point.
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Fig. 4. Diagrams analogous to Fig. 3, but forA = 1.5. The remaining parameters are as follows:B = 3.5, c0 = 1.5 (b),B = 3.94, c0 = 2 (c),
B = 4.32,c0 = 2 (d).

Fig. 5. Distribution of amplitude (12) over the reactor length after decay of transients at different inlet ratesc0. Values ofc0 are indicated at
the corresponding curves. The solid points on the curves represent the position of the critical points as found from the equationc(xca) = cca,
accounting for (8) and (10). For both figuresA = 1,σ = 0.25, andϕ = 0.01. The remaining parameters areB = 2.1, cca= 0.415 (a) andB = 3,
cca= 1.308 (b).

Observe that it is indeed close to the place of front
locking.

Let us discuss in more detail the location of the
place of the wave front locking and of the point of the
critical velocity of the absolute–convective transition.

In Fig. 5 we present the distributions of the ampli-
tudes of oscillations defined as

(12)W =
√
(U − U0)2 + (V − V0)2

over the reactor length after decay of transients. Dif-
ferent curves correspond to different inlet ratesc0. In
fact, the front does not have well-defined boundaries,
but we can attribute some characteristic width to it. Ar-
bitrarily, we define the WFL region (WFL stands for
wave front locking) as located between the points of
amplitudes

(13)W = e−20 and W = e−3.
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Fig. 6. Location of the borders of the WFL region (as defined by (13)) and the critical point versus the cone angleϕ. For both figuresA = 1,
σ = 0.25. The rest parameters:B = 2.1, c0 = 0.8 (a) andB = 3, c0 = 2.3 (b).

Fig. 7. AmplitudeW observed at the critical point versusB. For both figuresσ = 0.25, ϕ = 0.01. Panel (a) corresponds to the case of Hopf
bifurcation,A = 1, c0 = 1.2, and panel (b) to the case of Turing bifurcation,A = 1.5, c0 = 1.5.

From Fig. 5 one can see that in dependence on
the flow ratec0 the distributions are simply shifted in
space, but retain their shape. Fig. 6 shows the location
of the WFL region and of the critical point versus the
cone angleϕ. Observe that the critical point retains its
relative location inside the WFL region as the angleϕ

is changed. We observe that this is true at least in the
range of velocities not too far from the critical value
and at sufficiently small cone angles.

We conclude that from the location of the WFL
region in the cone reactor one can extract informa-
tion about the position of the critical point and, hence,
about the critical velocity associated with the ab-
solute–convective instability transition in the corre-
sponding uniform flow system.

From Figs. 5 and 6 one can see that the location
of the critical point in the WFL region depends on
the parameterB. This dependence is illustrated in
Fig. 7. Panel (a) corresponds to a region near the Hopf
bifurcation and panel (b) to the Turing bifurcation.
Note the apparent difference between the curves.

One more interesting feature of the conic flow sys-
tem consists of the presence of “jumps” in the spatial
distribution of the oscillation frequencies. As observed
on the diagrams of Figs. 3 and 4, the active region of
the medium consists of a number of domains sepa-
rated by relatively narrow “domain walls”; each do-
main corresponds to approximately constant time pe-
riod of oscillation. This may be explained as a com-
petition between two factors. One factor is a change
of the most favorable frequency of local oscillations
down the flow, and the other is an interaction of the
oscillations in spatially close regions, which tends to
synchronize them. In fact, this is a phenomenonknown
as cluster synchronization which has been observed
earlier in the numerical experiments with arrays of
locally coupled self-oscillators [12]. We will present
further details of a study of this phenomenon in the
reaction–diffusion flow model elsewhere [13].

The problem of correspondence between the transi-
tion in a homogeneous system and patterns in a system
with the control parameter changing in space is com-
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plicated in the general case. The idea that those struc-
ture will develop which are stable in the corresponding
system at the local values of the control parameter is
not always correct [14]. In particular, it may not be the
case for systems with subcritical transition [15]. In this
Letter we discussed some features of spatio-temporal
dynamics of a model of the reaction–diffusion flow
system in a conical reactor with cross-section slowly
expanding along the longitudinal coordinate. Due to
the deceleration of the flow, the instability which is lo-
cally convective near the inlet becomes absolute near
the opposite end of the reactor. We argued that there
exist a correspondence between this system and the
respective system with a constant flow. The observa-
tion of the front locking reveals the border between
the convective and absolute instability, and this cir-
cumstance may be used in experimental studies.
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