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Abstract

Scaling regularities are examined associated with effect of additive noise on a critical circle
map at the golden-mean rotation number. We present an improved numerical estimate for the
scaling constant of Hamm and Graham (Phys. Rev. A46, (1992) 6323) responsible for the
effect of noise, y = 2.3061852653. Decrease of the noise amplitude by this number ensures
possibility to distinguish one more level of fractal-like structure, associated with increase of
characteristic time scale by the golden mean factor (v/5 + 1) / 2. Numeric results demonstrating
evidence of the expected scaling are presented, e.g. portraits of the noisy attractors, devil’s
staircase plots, Lyapunov charts on the parameter plane in different scales.
© 2005 Elsevier B.V. All rights reserved.

PACS: 05.45.—a; 05.10.Cc; 05.40.Ca

Keywords: Circle map; Golden mean; Noise; Renormalization; Scaling

*Corresponding author.
E-mail addresses: kuznetsov(@sgu.ru, alkuz@sgu.ru (A.P. Kuznetsov).

0378-4371/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2005.05.002


www.elsevier.com/locate/physa

A.P. Kuznetsov et al. | Physica A 359 (2006) 48—64 49
1. Introduction

One of paradigmatic objects in the modern nonlinear dynamics is a one-
dimensional circle map. This is not only a simple and convenient artificial system but
also a productive model for description many phenomena in physics and other
sciences. It relates, in particular, to self-oscillators driven by periodic force [1],
Josephson junctions in microwave field [2,3], space-charge waves in solids [3], driven
damped pendulum [4]. In studies concerning biological and medical problems the
circle map appears as a model of heart dynamics e.g. in presence of competition of
two pacemakers controlling the rhythm [5].

Moreover, the circle map must be regarded not only as a qualitative model, but it
manifest universal quantitative regularities at the transition to chaos via quasiperiodic
motion. It follows from the renormalization group (RG) approach [6], which is
commonly recognized as an effective and powerful theoretical tool for analysis of deep
and fundamental features of dynamics between order and chaos. In particular, it
uncovers such a feature of dynamics as scale invariance (scaling) for subtle fractal
structures in phase space and in parameter space associated with transitions to chaos.
In nonlinear dynamics, the RG approach was introduced by Feigenbaum [7] in
application to period doubling scenario of the onset of chaos. Latter it was applied
successively for analysis of other types of transitions to chaos, including different
period-doubling universality classes [8], intermittency [9], quasiperiodicity [10],
phenomena of complex analytic dynamics [11], and transitions in coupled systems [12].

The most advanced results of theoretical studies and experiments on the onset of
chaos via quasiperiodicity relate to the case of the golden-mean ratio of the basic
involved frequencies, (v/5+ 1) / 2. Selection of this particular irrational is justified
not only by a commonly recognized simplicity and transparency of the respective
theoretical analysis, but also by a fact that in this case subtle structures in phase
space and parameter space revealed in theoretical researches or in experiments are
distinguishable better than those at other frequency ratios.

A number of accurate experimental studies were reported, in which many details of
the golden-mean critical dynamics predicted by the RG analysis were carefully observed
and documented, in particular, in fluid convection and in forced electronic oscillators
[13]. It relates to details of the parameter space structures (Arnold tongues), scaling and
multifractal properties of the critical quasiperiodic motion, Fourier spectra, etc.

It should be noted, however, that all real experimental systems inevitably contain
intrinsic noise. Account of noise is a crucial matter in careful analysis of phenomena
at the onset of chaos because the noise obviously blurs the most intimate details of
the observed fractal-like structures. With respect to application of the circle map to
description of Josephson junctions this circumstance was stressed e.g. in Ref. [14].

For description of effect of noise, the pioneering theoretical approach based on the
RG analysis was suggested by Crutchfield et al. and Shraiman et al. [15] in
application to period-doubling transition to chaos in dissipative systems. These
authors determined a universal factor ypp = 6.619036. .. responsible for the scaling
properties of the transition in respect to the effect of noise. Namely, decrease of
amplitude of noise with that factor ensures a possibility for observation of one more
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level of the period doubling cascade. Latter, analogous studies were performed for
other types of critical behavior at the onset of chaos [16-20]. In particular, in Ref.
[16] Hamm and Graham developed the RG approach for the transition to chaos via
the golden-mean quasiperiodicity in the circle map and estimated respective scaling
factor for the effect of noise, y = 2.30619. Decrease of the noise intensity by this
factor gives a possibility to distinguish one more level of the fractal structure,
associated with characteristic time scale increased by the golden mean factor
W = (/5 + 1)/2. Beside that paper, we aware of only two works specially devoted
to the effect of noise on the circle map [14,21]. They were published before the paper
of Hamm and Graham and contain only empirical results of numerical simulations
without solid RG foundation.

The aim of the present paper is to examine in more details scaling properties intrinsic
to the circle map under effect of noise near the critical golden-mean quasiperiodic orbit,
which follow from the RG approach. Section 2 is devoted to discussion of some
empirical numerical results for a stochastic version of the circle map model with
additive noise. In Section 3 we reproduce RG analysis of the effects of noise based on
one of the approaches suggested by Hamm and Graham, and present an improved
numerical value for the basic universal constant responsible for the scaling properties in
respect to noise. In Section 4 conclusions following from the RG analysis are discussed
in application to the circle map with noise. Computer illustrations for scaling
regularities are presented including portraits of the noisy attractors, devil’s staircase
plots, gray-scale charts for the Lyapunov exponent on the parameter plane near the
golden-mean critical point in different scales and at different noise levels.

2. Effect of noise: empirical results
As known [6,22], in the sine circle map
K .
Xpil = Xp+ 71— 2—s1n 2nx, (mod 1), (1)
T
the critical quasiperiodic motion at the onset of chaos with rotation number w =
W' = (/5 —1)/2 occurs at
K.=1, r. =0.60666106347011201228.. .. (2)

We will refer to this as the golden meal critical point, or GM critical point.

Let us introduce a sequence &, that represents a discrete-time white noise, i.e. the
terms of this sequence are assumed to be statistically independent. The maximal
magnitude of &, is supposed to be bounded. The average for &, is zero, <€,,> =0, the

standard deviation is some constant, ¢ = 1/<éi>. Now, we consider the following

iterative stochastic map

k .
Xpal = Xp+ 7 — 2—sm 2nx, + &&, (mod 1), 3)
T

where ¢ characterizes intensity of the additive noise source.
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If amplitude of noise is small, and we examine behavior near the critical
point on large time scales, the concrete form of the probability distribution for &,
apparently will be not essential, and the behavior of the noisy system will be of a
universal nature. (The same is true for other critical situations allowing analysis in
terms of the RG method, cf. Ref. [23].) In the present computations we define £, as a
random variable uniformly distributed over an interval [—0.5, 0.5]; hence,
oc=1 / V12,

In Fig. 1 we show Lyapunov charts on the plane of control parameter / versus
amplitude of driving ¢ without noise (¢ = 0) and in presence of noise (¢ = 0.03). The
Lyapunov exponent has been computed via relation

A~ N Zlog |1 — K cos (2mx,)| 4)

at each pixel of the picture. Negative values of A are coded in gray scale: the lighter
the color, the less negative is the Lyapunov exponent. Zero A corresponding to
quasiperiodic dynamics are designated by white, and positive ones associated with
chaotic dynamics by black. Location of the GM critical point is indicated on the
panel (a). (See Ref. [24] for idea and other examples of use of the Lyapunov charts.)

Domains of periodic behavior in the noiseless case known as Arnold tongues are
clearly visible in the panel (b) as gray colored formations. Between them, in the
subcritical domain K <1 quasiperiodic dynamics takes place.

In presence of noise, periodic or quasiperiodic dynamics in pure sense do not
occur, but the Lyapunov charts clearly demonstrate that the picture similar to
that of the noiseless map is visible at least at small or moderate noises, although
subtle details fade away due to the noise. We may speak of noisy periodic regimes, if
the Lyapunov exponent is essentially negative, or of noise quasiperiodic, if it is close
to zero, or of noisy chaotic, if it is positive. The Lyapunov charts allow an easy visual
recognition of them. Observe gradual disappearance of subtle structure of domains
in the parameter plane with increase of noise level in diagrams (b)—(d).

Fig. 2 shows portraits of attractors at the GM critical point in coordinates X, r,
versus x,, where Fy is one of Fibonacci numbers. (Concretely, diagrams in Fig. 2
have been plotted for Fg = 8.) This form of graphical presentation of motions will be
convenient in further considerations. Panel (a) corresponds to a pure dynamical case
(no noise), panels (b)—(d) to presence of noise of subsequently increasing amplitudes.
One can see how the picture of the attractor becomes blurred in higher and higher
degree with increase of noise, and the subtle details step by step disappear on the
noisy background.

3. Renormalization group analysis

In application to all situations of the golden-mean quasiperiodisity, the main
idea of the RG analysis consists in examination of evolution operators defined
for time intervals given by subsequent Fibonacci’s numbers Fj: Fo =0, F; =1,
Frio=Fiy1 + Fy.
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Fig. 1. Lyapunov charts for the map (3) on the plane of control parameters r and K. At each pixel of the
pictures, the Lyapunov exponent computed from the expression (4) is coded in gray scale. Gray tones
designate negative values of the Lyapunov exponent (the lighter the color, the less negative is the
exponent). Zero values (quasiperiodic dynamics) are designated by white, and positive values (chaos) by
black. Panel (a) corresponds to absence of noise (¢ = 0), and the next panels to subsequently increasing
intensity of noise, ¢ = 0.001 (b), e = 0.01 (c) ¢ = 0.1 (d). On panel (a) location of the golden-mean critical
point (2) is indicated as GM.

Let us suppose that in presence of noise evolution of the dynamical variable x at
the GM point for Fj and Fy; steps is governed by equations

XivF, = Qi) + e (x;) (5
and

XitF, = Qry1(X0) + elith gy (x0), (6)
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Fig. 2. Portraits of attractor at the GM critical point of the model (3) on iteration diagrams in coordinates
(Xus Xn+ri) With Fy = F¢ = 8. Diagram (a) corresponds to a pure dynamical case (no noise), and other
diagrams to presence of noise of subsequently increased amplitude: ¢ = 0.001 (b), ¢ = 0.01 (¢) ¢ = 0.1 (d).

where &; designates random numbers with properties formulated in the previous
section, ¥, (x) and y,, (x) are some auxiliary functions. The noise amplitude
parameter ¢ is supposed to be small. Obviously, the model (3) represents a particular
version of Egs. (5) and (6): at F; = F, = 1 we set

$1(0) = o) = x + e — (1/20)sin 25, 1 (x) = Yr(x) = 1. %)

By composition of (5) and (6) we obtain an equation for evolution over Fj,, steps
of discrete time. With account of terms up to the first order in ¢ it reads

XitFpy = Or(Dri1 (30)) + el & (Prgs Wy (X)) + i, Wi B )] (B)
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In respect to the stochastic term, we make the following remark. Let us suppose
that at some moment an orbit starts at x;. Consider an ensemble of the random
numbers {&; & pry1} of zero mean and mean square ¢2, and compose them with
coefficients given by functions of x;. As {{; &, 41} are statistically independent, the
sum can be represented again as a random number of zero mean and of mean square
¢, multiplied by a function of x;, namely,

Eipi(brear ()W ey () + 5i+Fk+1 Vi Pppa (xi) = Ei¢k+2(xi)~ )
Now, we introduce
Pr2(%) = PPy (X)) (10)

and rewrite Eq. (10) in the form analogous to (7) and (8), with redefined random
variable and functions ¢ and ¥

XitFriy = Preia(xi) + 8%i¢k+2(xi)~ (11)
To obtain closed functional equations, we square both parts of Eq. (9) and

. . . ~2
perform averaging over ensemble of realizations of the random variable. As <éi> =

(&) =d*, and <éiéi+Fk+l> =0, we come to the relation

V2O = [0t COFP W1 OF + WP GNP (12)

where prime designates a derivative.

In accordance with the basic content of the renormalization approach, we implement
now a scale change xn—>x/ock, u—>(—w) u, where o= —1.288574553954368 ...
is the scaling constant for the critical golden mean dynamics [6,22]. Then, in terms of
the rescaled functions

gi(x) = df (@ Fx),  fr(x) = “k¢k+1(“_kx)’
D (x) = [ 0P, Wir(x) = o [y (0 F 0P,
the above equations imply that
Grr1(X) = of 1 (x/0),
Srer1(0) = 0g, (f e (x/20)), ”
Dy 1 () = ¥y (x/ ), (14
Wir1(x) = o2 {[g) (1 (x /)P Wr(x /o) + Di(f 1 (x /o))

These relations define the RG transformation for a set of functions {g,,f, Pr, ¥i}. The
procedure may be repeated again and again to get the functions for larger and larger k,
1.e. to determine the renormalized evolution operators for larger Fibonacci’s numbers of
steps of discrete time Fy.

As follows from the RG analysis [6], at the GM critical point, the sequence of
functions g,(x), f,(x) converges asymptotically to a fixed-point solution of the RG
equation, a functional pair {g,f}, which obeys

g(x) = af (x/a), f(x,y) = ag(f (x/2)) (15)

(13)
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or

g(x) = &>g(a " g(x/x)). (16)
Numerical data for polynomial expansion of the universal function g(x) over powers
of x* are known and may be found e.g. in Ref. [25].

Convergence of the sequence {g,(x), f(x)} to the fixed-point solution of the RG
transformation implies that the recursive linear functional equations for the
functional pairs {(Dk(x), lI‘k(x)} asymptotically correspond to a k-independent
linear operator, and behavior of the solution is determined by an eigenvector
associated with the largest eigenvalue Q for this operator [16]:

i) W (x /o)
Q = 201,/ 2 d : 17)
<‘P> (a {lg'(f (x/o))] ‘P(X/Ot)Jrq)(f(X/OC))})

As mentioned, the universal functions g(x) and f(x) have been obtained in
computations via accurate approximation by finite expansions over powers of x°
[6,25]. Using those data, we constructed the functional transformation of the right-
hand part of Eq. (17) as a computer program. The unknown functions {®(x), ¥(x)}
were represented by a set of their values at nodes of a grid on interval —-1.2 <x<1.2,
and by an interpolation scheme between them. Taking arbitrarily initial con-
ditions ®(x) =1, W(x) =1, the program performed the functional transfor-
mation many times and normalized the resulting functions at each step as
®°(x) = B(x)/D(0), ¥O(x) = W(x)/P(0), until the form of the functions stabilized.
The value of ®(0) (before the normalization) converges to the eigenvalue

Q=15318490477171... (18)

Now, for large k in linear approximation in the noise amplitude, the stochastic
maps for evolution over F and Fj steps at the GM critical point may be written in
terms of the renormalized variables as

Xivr, = g(x;) + ey* (X)),

Mo, =100 + et En), (1)
where
o(x) = 1/ 0°(x), v(x) = /P°(x), y = VQ = 2.306 185 265 26. (20)

Next, let us consider a small shift of parameters » and K from the GM critical
point. Then, some additional perturbation terms will appear in the equations, which
correspond to two relevant eigenmodes of the RG equation linearized at the fixed
point solution (see [6,25]). With account of them we write

Xirr, = 9(x) + C1OHP(x) + CrLO5hD (i) + &y* Ep(xy), 1)

where h(ll)(x) and h(lz)(x) are respective egenfunvectors. The eigenvalues ¢, and J,, as
found numerically [6,22], are

01 = —2.833610655891, 5, = o> = 1.660424381098. (22)
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Coefficients C| and C; in Eq. (21) depend on parameters of the original map and
vanish at the critical point GM. In a close neighborhood of the critical point it is
sufficient to account only leading terms of the power expansions in respect to
deflections of the original parameters. The mode associated with C; corresponds to a
shift along the critical line K = 1; the map retains the cubic inflection under this
perturbation. The second mode, with coefficient C,, appears due to a shift from the
critical line along the curve of constant winding number. In accordance with Ref.
[25], expressions for the coefficients C; and C, via parameters of the original sine
circle map may be written as follows:

r—r.=C; —0.01749C; — 0.00148C2, k — k. = C,.

We regard C; and C, as special local coordinates (‘“scaling coordinates”) in a
neighborhood of the GM critical point in the parameter plane.

Now, we are ready to formulate the basic scaling property of dynamics near the
GM critical point in presence of noise that follows from (21).

If we have some parameter shift from the GM critical point and decrease it in such
way that the coefficients C; and C, reduce by factors §; and J,, respectively, and
reduce noise amplitude ¢ by factor y, then the form of the stochastic map (21)
remains unchanged. Thus, at the new parameters, the noisy system will demonstrate
statistically similar behavior as that with the old ones, but with a characteristic time
scale increased by factor Fiy /Fr =~ w™' = (V/5+ 1)/2.

4. Scaling properties and their demonstration in numerical computations

Let us discuss some manifestations of the effects of noise on the circle map at the
GM critical point and in its vicinity in numerical experiments, in a frame of scaling
regularities outlined in the previous section.

4.1. Noisy critical attractor

To examine scaling properties of the critical orbit at the GM point it is convenient
to represent the motion in coordinates Xp+F, VETSUS X, as done in Section 2, at
subsequent Fibonacci numbers F.

First, we demonstrate in Fig. 3 the scaling property of the noiseless critical orbit.
Inset in each picture shows a fragment of it, and these fragments are pictured with
magnification increasing by factor o« = —1.2885... from one to another picture.
Observe nice similarity of these rescaled plots. (Formally speaking, in accordance
with RG analysis, this self-similarity is asymptotic: it become precise only at large k
and for asymptotically small scales.) In the central diagram (b) the inset is pictured
upside down because of negativity of the scaling factor a.

In presence of noise, a subtle structure of the critical quasiperiodic orbit is smeared
out level by level, as the intensity of noise grows. In accordance with conclusions of
the previous section, each new level blurs out as we increase magnitude of the noise
source by factor y =2.30618... Diagrams in Fig. 4 show portraits of the noisy
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Fig. 3. Illustration of scaling for the golden-mean critical orbit in coordinates x,.r, versus x,, Fr = 8, 13,
21 without noise. In each next picture an inset shows a fragment with magnification increased by o =
—1.2885... in comparison with the previous picture.
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Fig. 4. Portraits of the orbit of the noisy circle map (3) at the GM critical point r = r. = 0.606661 .. .,
K =1 at the noise amplitude values & = 0.005 (a), ¢ = 0.005/y (b), and & = 0.005/7 (c).

attractors of the model system (3) at the GM critical point with the noise intensity
parameter ¢ = 0.005 (a), ¢ = 0.005/y (b), and & = 0.005/7? (c). The right-hand panels
represent boxes from the previous diagrams, with magnification for the plots (a), (b)
and (c) with factors C, aC, and «*C, respectively, where C is some constant. Observe
similarity of the pictures for the noisy attractors.

4.2. Lyapunov exponent in the presence of noise

In accordance with results of Section 3, at the GM critical point the system will
demonstrate similar behaviors for noise intensity values ¢ and ¢/y, and in the second
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Fig. 5. Plots for the Lyapunov exponent versus the noise intensity ¢. A selected box is shown with
magnification by a factor W = 1.618... along the vertical axis, and by a factor y = 2.30618.. .. along the
horizontal axis.

case characteristic time scale is larger by factor W =w~! =1.6180.... Hence,
magnitude of the Lyapunov exponent at ¢/ must be less than that at ¢ by this factor.
Fig. 5 shows plots for the Lyapunov exponent versus the noise intensity ¢. A selected
box is shown with magnification by factor W along the vertical axis, and by factor y
along the horizontal axis. Observe self-similarity of the pictures under this scale
change.

Let us estimate a critical index for the Lyapunov exponent with respect to the
intensity of noise. As we know, a change of ¢ by factor y is accompanied with a
change of Lyapunov exponent by factor W. Thus, it must behave as

A o, (23)

where n = log, W = 0.575 891 387... Fig. 6 shows dependence for A of ¢ in double
logarithmic scale. The points obtained in the numerical computations are clearly
placed along the straight line with slope #.

It is worth noting a kind of noisy stabilization of the dynamics at the GM point.
Indeed, the noise promotes a decrease of the Lyapunov exponent, i.e. a decrease of
sensitivity in respect to the initial conditions, and delays the onset of chaos. The same
conclusion was mentioned in Refs. [14,21]. It is opposite to situation in the case of
period-doubling transition to chaos [26].

4.3. Scaling regularities for a neighborhood of the critical point in presence of noise

Now let us turn to examination of scaling regularities in the circle map observed
with detuning of the control parameters from the GM critical point.

Let us start with consideration of variation of one parameter r with constant
K = 1. It implies that the map retains the cubic inflection point. In the perturbed
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Fig. 6. Plot of the Lyapunov exponent versus noise intensity at the GM critical point in double
logarithmic scale (dots). The straight line corresponds to the relation (23).

universal evolution operator (21) a shift of r gives rise to the mode with eigenvalue

0 = —2.83361...,, and this universal number will present in the scaling relations.
Fig. 7 illustrates the corresponding scaling property of the dynamics without

noise. The central diagram shows the rotation number dependence on parameter r:

xl‘l

p(r) = lim (24)

n—so00 2N

(In the computation of p the modulus operation is ignored in the main Egs. (1)
or (3).)

The pictured object is known as ““‘devil’s staircase” [27]. It has infinite number of
steps, each placed at a rational value of the rotation number. Steps correspond to
crossing Arnold’s tongues and to periodic motions. Growth of p(r) takes place on a
rest fractal set of parameter values associated with irrational rotation numbers, i.e.,
with quasiperiodic motions. At K = 1 this set has zero measure on axis r (‘‘complete
devil’s staircase” [27]). The golden mean rotation number occurs just at the
parameter r. associated with the critical point under study. Panels to the left and to
the right from the main central diagram of Fig. 7 show details of the staircase
structure in a vicinity of the GM point. The property of self-similarity consists in
reproduction of the structure in small scales under magnification by factor §; along
the horizontal axis and by factor (—W?) = —2.6180... along the vertical axis.

In presence of noise, the rotation number may be determined in numerical
simulations via the formula (24) in the same way as in a noiseless case, as an average
over a large number of iterations. In the noisy system, however, we cannot speak of
periodicity or quasiperiodicity in usual pure sense. Nevertheless, some crude
classification remains yet possible.

At some values of r one can observe relatively long time intervals of dynamics
close to periodic. These intervals alternate with rare noise induced “phase slips”,
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where the variable x accepts a relatively fast positive or negative shift approximately
by a unit. These are, to say, motions representing a noisy version of periodicity. At
other values, the variable x evolves without notable plateaus in the temporal
dependence, with statistically well-defined trend. It corresponds to a noisy version of
quasiperiodicity.

p
0.818 / 05416
12 [/ '[
0.418LL L 06944
0.4067 0s067 - 06772 05361

Fig. 7. Illustration of the local scaling property in a vicinity of the golden mean critical point without
noise: a plot of rotation number p versus parameter r (“devil’s staircase’). Property of self-similarity
consists in reproduction of the structure in small scales under magnification by factor §; = —2.8336 along
the horizontal axis, and by factor (—W?) = —2.6180... along the vertical axis.

0.8180
e=0.1/y

0.4180
0.4067

1.0

w

0.5889
0.0 1.0 0.5818 0.6316
r

Fig. 8. Illustration of scaling in the structure of devil’s staircase near the golden mean critical point in
presence of noise. The main diagram and the first inset correspond to the noise level ¢ = 0.1. The
subsequent pictures in order shown by arrows are plotted for noise intensities, respectively, ¢ = 0.1/y and

0‘1/)12.
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On a plot of rotation number versus parameter r the picture looks like sequential
smoothing out of the finest and than of larger and larger scale details of the fractal
structure of devil’s staircase. This phenomenon obeys the scaling property following
from the RG analysis, as illustrated in Fig. 8. The main diagram and the first inset
correspond to the noise level ¢ = 0.1. The second and the third pictures in the series
(see arrows) are plotted for the noise levels & =0.1/y and 0.1/7%, respectively.
Observe obvious good correspondence of the visible structures in the three outside
panels.

Fig. 9 shows a set of gray-scale Lyapunov charts on a plane of parameter r versus
noise intensity ¢ at K = 1. Dark gray areas correspond to large negative values of the
Lyapunov exponent. These are domains of “‘noisy periodicity’’, which gradually blur
out with increase of noise. Light gray areas correspond to small negative Lyapunov
exponent. These are domains of “noisy quasiperiodicity”.

Finally, let us allow variation of two control parameters r and K in the stochastic
circle map (3) and examine scaling properties of the picture of the noisy Arnold tongues.

0.217 0.094

0.531

0.0 ‘ill ii]li

: 0.000
0.0 r GM 1.0 0.589 0.633

Fig. 9. Lyapunov charts demonstrating scaling in a neighborhood of the GM critical point at constant
critical value of K = 1 on a plane of parameter r and noise amplitude ¢. Horizontal and vertical scales in a
sequence of diagrams in order indicated by arrows are subsequently changed, respectively, by factors
0 = —2.8336 and y = 2.30618. Simultaneously gray scale coding is redefined at each new level of
magnification to make the similarity clearly visible.
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Fig. 10. Lyapunov charts demonstrating scaling in a neighborhood of the GM critical point. Rules of the
gray scale coding are the same as in Fig. 1. The main diagram (a) plotted in coordinates (r, K) corresponds
to the noise level ¢ =0.03. Interior of a curvilinear quadrangle is shown separately (b) in scaling
coordinates (C;, C,). On panels (c) and (d) horizontal and vertical scales are subsequently changed by
factors 0; = —2.83361... and 6, = 1.66042..., respectively, and the noise level is decreased by factor y =
2.30618... Gray scale coding is analogous to that in Fig. 1 and redefined at each new level of magnification
to make the similarity clearly visible.

In Fig. 10 the main diagram shows a gray-scale Lyapunov chart for a part of the
parameter plane with noise amplitude ¢ = 0.03. A curvilinear quadrangle in the
diagram is bounded by coordinate lines of the scaling coordinates (22). The critical
point GM is disposed exactly in the middle of the quadrangle. Its interior is shown in
the first inset in the scaling coordinates. The next panels represent smaller and
smaller vicinities of the critical point with subsequent decrease of the noise intensity
by factor y. Observe evident similarity of the pictures under several steps of the
rescaling.

5. Conclusion
In this article we considered scaling regularities associated with the effect of

additive noise on a sine circle map near the critical point of transition to chaos via
the quasiperiodic motion with the golden-mean rotation number. On a basis of the
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renormalization group approach we formulated several scaling relations and
demonstrated them in numerical computations. In particular, we put attention to
smearing due to the presence of noise of small-scale structure of the critical orbit, of
devil’s staircase, and of the noisy Arnold tongues.

It may be conjectured that the stated regularities are valid not only for a sine circle
map, but for the entier universality class of nonlinear dissipative systems with
quasiperiodic dynamics, which it represents. This assertion follows from the ideology
of the RG approach. Thus, the same regularities will be intrinsic e.g. for self-
oscillators and rotators under external periodic force, Josephson junctions in
microwave field, driven fluid convection etc. As expected, the results of the present
research will be helpful in treatment of experimental results of observation and
investigation of the onset of complex behavior in systems of different physical nature
demonstrating transition to chaos via quasiperiodic motions.
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