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Scaling regularities are examined associated with effect of additive noise on a crit

map at the golden-mean rotation number. We present an improved numerical estima

scaling constant of Hamm and Graham (Phys. Rev. A46, (1992) 6323) responsibl

effect of noise, g ¼ 2:3061852653. Decrease of the noise amplitude by this numbe

possibility to distinguish one more level of fractal-like structure, associated with in

characteristic time scale by the golden mean factor ð
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evidence of the expected scaling are presented, e.g. portraits of the noisy attractor

staircase plots, Lyapunov charts on the parameter plane in different scales.
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One of paradigmatic objects in the modern nonlinear dynamics is
dimensional circle map. This is not only a simple and convenient artificial sy
also a productive model for description many phenomena in physics an
sciences. It relates, in particular, to self-oscillators driven by periodic f
Josephson junctions in microwave field [2,3], space-charge waves in solids [3
damped pendulum [4]. In studies concerning biological and medical prob
circle map appears as a model of heart dynamics e.g. in presence of compe
two pacemakers controlling the rhythm [5].
Moreover, the circle map must be regarded not only as a qualitative mod

manifest universal quantitative regularities at the transition to chaos via quas
motion. It follows from the renormalization group (RG) approach [6],
commonly recognized as an effective and powerful theoretical tool for analysi
and fundamental features of dynamics between order and chaos. In part
uncovers such a feature of dynamics as scale invariance (scaling) for subtl
structures in phase space and in parameter space associated with transitions t
In nonlinear dynamics, the RG approach was introduced by Feigenbaum
application to period doubling scenario of the onset of chaos. Latter it was
successively for analysis of other types of transitions to chaos, including
period-doubling universality classes [8], intermittency [9], quasiperiodic
phenomena of complex analytic dynamics [11], and transitions in coupled syst
The most advanced results of theoretical studies and experiments on the

chaos via quasiperiodicity relate to the case of the golden-mean ratio of t
involved frequencies, ð

ffiffiffi
5

p
þ 1Þ

�
2. Selection of this particular irrational is

not only by a commonly recognized simplicity and transparency of the re
theoretical analysis, but also by a fact that in this case subtle structures
space and parameter space revealed in theoretical researches or in experim
distinguishable better than those at other frequency ratios.
A number of accurate experimental studies were reported, in which many d

the golden-mean critical dynamics predicted by the RG analysis were carefully
and documented, in particular, in fluid convection and in forced electronic o
[13]. It relates to details of the parameter space structures (Arnold tongues), sca
multifractal properties of the critical quasiperiodic motion, Fourier spectra, et
It should be noted, however, that all real experimental systems inevitably

intrinsic noise. Account of noise is a crucial matter in careful analysis of phe
at the onset of chaos because the noise obviously blurs the most intimate d
the observed fractal-like structures. With respect to application of the circle
description of Josephson junctions this circumstance was stressed e.g. in R
For description of effect of noise, the pioneering theoretical approach base

RG analysis was suggested by Crutchfield et al. and Shraiman et al.
application to period-doubling transition to chaos in dissipative system
authors determined a universal factor gPD ¼ 6:619036 . . . responsible for th
properties of the transition in respect to the effect of noise. Namely, dec
amplitude of noise with that factor ensures a possibility for observation of o
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other types of critical behavior at the onset of chaos [16–20]. In particular
[16] Hamm and Graham developed the RG approach for the transition to c
the golden-mean quasiperiodicity in the circle map and estimated respectiv
factor for the effect of noise, g ¼ 2:30619. Decrease of the noise intensity
factor gives a possibility to distinguish one more level of the fractal s
associated with characteristic time scale increased by the golden mean
W ¼ ð

ffiffiffi
5

p
þ 1Þ=2. Beside that paper, we aware of only two works specially

to the effect of noise on the circle map [14,21]. They were published before t
of Hamm and Graham and contain only empirical results of numerical sim
without solid RG foundation.
The aim of the present paper is to examine in more details scaling properties

to the circle map under effect of noise near the critical golden-mean quasiperiod
which follow from the RG approach. Section 2 is devoted to discussion
empirical numerical results for a stochastic version of the circle map mo
additive noise. In Section 3 we reproduce RG analysis of the effects of noise b
one of the approaches suggested by Hamm and Graham, and present an im
numerical value for the basic universal constant responsible for the scaling prop
respect to noise. In Section 4 conclusions following from the RG analysis are d
in application to the circle map with noise. Computer illustrations for
regularities are presented including portraits of the noisy attractors, devil’s
plots, gray-scale charts for the Lyapunov exponent on the parameter plane
golden-mean critical point in different scales and at different noise levels.
2. Effect of noise: empirical results

(1)

ber w ¼

(2)

.
, i.e. the
maximal
¼ 0, the

ollowing

(3)
As known [6,22], in the sine circle map

xnþ1 ¼ xn þ r �
K

2p
sin 2pxn ðmod 1Þ,

the critical quasiperiodic motion at the onset of chaos with rotation num
W�1 ¼ ð

ffiffiffi
5

p
� 1Þ=2 occurs at

Kc ¼ 1; rc ¼ 0:60666106347011201228 . . .

We will refer to this as the golden meal critical point, or GM critical point
Let us introduce a sequence xn that represents a discrete-time white noise

terms of this sequence are assumed to be statistically independent. The
magnitude of xn is supposed to be bounded. The average for xn is zero, xn

� �
standard deviation is some constant, s ¼

ffiffiffiffiffiffiffiffiffi
x2n
� �q

. Now, we consider the f

iterative stochastic map

xnþ1 ¼ xn þ r �
k

2p
sin 2pxn þ exn ðmod 1Þ,

where e characterizes intensity of the additive noise source.
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point on large time scales, the concrete form of the probability distributio
apparently will be not essential, and the behavior of the noisy system will
universal nature. (The same is true for other critical situations allowing an
terms of the RG method, cf. Ref. [23].) In the present computations we defin
random variable uniformly distributed over an interval [�0.5, 0.5];
s ¼ 1

� ffiffiffiffiffi
12

p
.

In Fig. 1 we show Lyapunov charts on the plane of control parameter
amplitude of driving e without noise (e ¼ 0) and in presence of noise (e ¼ 0:
Lyapunov exponent has been computed via relation

L ffi N�1
X

log j1� K cos ð2pxnÞj

at each pixel of the picture. Negative values of L are coded in gray scale: th
the color, the less negative is the Lyapunov exponent. Zero L correspon
quasiperiodic dynamics are designated by white, and positive ones associa
chaotic dynamics by black. Location of the GM critical point is indicated
panel (a). (See Ref. [24] for idea and other examples of use of the Lyapunov
Domains of periodic behavior in the noiseless case known as Arnold ton

clearly visible in the panel (b) as gray colored formations. Between them
subcritical domain Ko1 quasiperiodic dynamics takes place.
In presence of noise, periodic or quasiperiodic dynamics in pure sense

occur, but the Lyapunov charts clearly demonstrate that the picture si
that of the noiseless map is visible at least at small or moderate noises, a
subtle details fade away due to the noise. We may speak of noisy periodic re
the Lyapunov exponent is essentially negative, or of noise quasiperiodic, if i
to zero, or of noisy chaotic, if it is positive. The Lyapunov charts allow an ea
recognition of them. Observe gradual disappearance of subtle structure of
in the parameter plane with increase of noise level in diagrams (b)–(d).
Fig. 2 shows portraits of attractors at the GM critical point in coordinat

versus xn, where F k is one of Fibonacci numbers. (Concretely, diagrams i
have been plotted for F 6 ¼ 8.) This form of graphical presentation of motion
convenient in further considerations. Panel (a) corresponds to a pure dynam
(no noise), panels (b)–(d) to presence of noise of subsequently increasing am
One can see how the picture of the attractor becomes blurred in higher an
degree with increase of noise, and the subtle details step by step disappea
noisy background.
3. Renormalization group analysis

he main
defined
F1 ¼ 1,
In application to all situations of the golden-mean quasiperiodisity, t
idea of the RG analysis consists in examination of evolution operators
for time intervals given by subsequent Fibonacci’s numbers Fk: F 0 ¼ 0,
Fkþ2 ¼ F kþ1 þ Fk.



Let us suppose that in presence of noise evolution of the dynamical variable x at

(5)

(6)
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Fig. 1. Lyapunov charts for the map (3) on the plane of control parameters r and K. At each pixel of the

pictures, the Lyapunov exponent computed from the expression (4) is coded in gray scale. Gray tones

designate negative values of the Lyapunov exponent (the lighter the color, the less negative is the

exponent). Zero values (quasiperiodic dynamics) are designated by white, and positive values (chaos) by

black. Panel (a) corresponds to absence of noise (e ¼ 0), and the next panels to subsequently increasing

intensity of noise, e ¼ 0:001 (b), e ¼ 0:01 (c) e ¼ 0:1 (d). On panel (a) location of the golden-mean critical

point (2) is indicated as GM.

A.P. Kuznetsov et al. / Physica A 359 (2006) 48–6452
the GM point for F k and Fkþ1 steps is governed by equations

xiþFk
¼ fkðxiÞ þ exickðxiÞ

and

xiþFk
¼ fkþ1ðxiÞ þ exickþ1ðxiÞ,



where xi designates random numbers with properties formulated in the previous
plitude

articular

(7)

kþ2 steps

Þ�. (8)
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Fig. 2. Portraits of attractor at the GM critical point of the model (3) on iteration diagrams in coordinates

(xn, xnþFk) with Fk ¼ F6 ¼ 8. Diagram (a) corresponds to a pure dynamical case (no noise), and other

diagrams to presence of noise of subsequently increased amplitude: e ¼ 0:001 (b), e ¼ 0:01 (c) e ¼ 0:1 (d).
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section, ckðxÞ and ckþ1ðxÞ are some auxiliary functions. The noise am
parameter e is supposed to be small. Obviously, the model (3) represents a p
version of Eqs. (5) and (6): at F1 ¼ F2 ¼ 1 we set

f1ðxÞ ¼ f2ðxÞ ¼ x þ rc � ð1=2pÞ sin 2px; c1ðxÞ ¼ c2ðxÞ 	 1.

By composition of (5) and (6) we obtain an equation for evolution over F

of discrete time. With account of terms up to the first order in e it reads

xiþFkþ2
¼ fkðfkþ1ðxiÞÞ þ e½xif

0
kðfkþ1ðxiÞÞckþ1ðxiÞ þ xiþFkþ1

ckðfkþ1ðxiÞ



In respect to the stochastic term, we make the following remark. Let us suppose
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that at some moment an orbit starts at xi. Consider an ensemble of the
numbers fxi;xiþFkþ1g of zero mean and mean square s2, and compose th
coefficients given by functions of xi. As fxi;xiþFkþ1g are statistically independ
sum can be represented again as a random number of zero mean and of mea
s2, multiplied by a function of xi, namely,

xif
0
kðfkþ1ðxiÞÞckþ1ðxiÞ þ xiþFkþ1

ckðfkþ1ðxiÞÞ ¼
~xickþ2ðxiÞ.

Now, we introduce

fkþ2ðxÞ ¼ fkðfkþ1ðxÞÞ

and rewrite Eq. (10) in the form analogous to (7) and (8), with redefined
variable and functions f and C

xiþFkþ2
¼ fkþ2ðxiÞ þ e~xickþ2ðxiÞ.

To obtain closed functional equations, we square both parts of Eq.

perform averaging over ensemble of realizations of the random variable. As

x2i
� �

¼ s2, and xixiþFkþ1

D E
¼ 0, we come to the relation

½ckþ2ðxÞ�
2 ¼ ½f0

kðfkþ1ðxÞÞ�
2½ckþ1ðxÞ�

2 þ ½ckðfkþ1ðxÞÞ�
2,

where prime designates a derivative.
In accordance with the basic content of the renormalization approach, we im

now a scale change x7!x
�
ak; u 7!ð�wÞku, where a ¼ �1:2885745539

is the scaling constant for the critical golden mean dynamics [6,22]. Then, in
the rescaled functions

gkðxÞ ¼ akfkða
�kxÞ; f kðxÞ ¼ akfkþ1ða

�kxÞ;

FkðxÞ ¼ ½ckða
�kxÞ�2; CkðxÞ ¼ ak½ckþ1ða

�kxÞ�2;

the above equations imply that

gkþ1ðxÞ ¼ af kðx=aÞ;

f kþ1ðxÞ ¼ agkðf kðx=aÞÞ;

Fkþ1ðxÞ ¼ a2Ckðx=aÞ;

Ckþ1ðxÞ ¼ a2f½g0
kðf kðx=aÞÞ�

2Ckðx=aÞ þ Fkðf kðx=aÞÞg:

These relations define the RG transformation for a set of functions fgk; f k;Fk;C
procedure may be repeated again and again to get the functions for larger and
i.e. to determine the renormalized evolution operators for larger Fibonacci’s nu
steps of discrete time Fk.
As follows from the RG analysis [6], at the GM critical point, the sequ

functions gkðxÞ, f kðxÞ converges asymptotically to a fixed-point solution of
equation, a functional pair fg; f g, which obeys

gðxÞ ¼ af ðx=aÞ; f ðx; yÞ ¼ agðf ðx=aÞÞ



or
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gðxÞ ¼ a2gða�1gðx=aÞÞ.

Numerical data for polynomial expansion of the universal function g(x) ove
of x3 are known and may be found e.g. in Ref. [25].
Convergence of the sequence fgkðxÞ; f kðxÞg to the fixed-point solution of

transformation implies that the recursive linear functional equations
functional pairs FkðxÞ; CkðxÞ

	 

asymptotically correspond to a k-inde

linear operator, and behavior of the solution is determined by an eig
associated with the largest eigenvalue O for this operator [16]:

O
F

C

� �
¼

a2Cðx=aÞ

a2f½g0ðf ðx=aÞÞ�2Cðx=aÞ þ Fðf ðx=aÞÞg

 !
.

As mentioned, the universal functions g(x) and f ðxÞ have been obta
computations via accurate approximation by finite expansions over powe
[6,25]. Using those data, we constructed the functional transformation of t
hand part of Eq. (17) as a computer program. The unknown functions fFðx
were represented by a set of their values at nodes of a grid on interval –1.2 o
and by an interpolation scheme between them. Taking arbitrarily init
ditions FðxÞ 	 1, CðxÞ 	 1, the program performed the functional t
mation many times and normalized the resulting functions at each
F0ðxÞ ¼ FðxÞ=Fð0Þ; C0ðxÞ ¼ CðxÞ=Fð0Þ, until the form of the functions st
The value of F(0) (before the normalization) converges to the eigenvalue

O ¼ 5:318 490 477 71 . . .

Now, for large k in linear approximation in the noise amplitude, the st
maps for evolution over F k and Fkþ1 steps at the GM critical point may be w
terms of the renormalized variables as

xiþFk
¼ gðxiÞ þ egkxijðxiÞ;

xiþFkþ1
¼ f ðxiÞ þ egkxiuðxiÞ;

where

jðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
F0ðxÞ

q
; uðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C0ðxÞ

q
; g ¼

ffiffiffiffi
O

p
¼ 2:306 185 265 26.

Next, let us consider a small shift of parameters r and K from the GM
point. Then, some additional perturbation terms will appear in the equation
correspond to two relevant eigenmodes of the RG equation linearized at t
point solution (see [6,25]). With account of them we write

xiþFk
¼ gðxiÞ þ C1d

k
1hð1Þ

q ðxiÞ þ C2d
k
2hð2Þ

q ðxiÞ þ egkxijðxiÞ,

where h
ð1Þ
1 ðxÞ and h

ð2Þ
1 ðxÞ are respective egenfunvectors. The eigenvalues d1 an

found numerically [6,22], are

d1 ¼ �2:833610655891; d2 ¼ a2 ¼ 1:660424381098.
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vanish at the critical point GM. In a close neighborhood of the critical po
sufficient to account only leading terms of the power expansions in re
deflections of the original parameters. The mode associated with C1 correspo
shift along the critical line K ¼ 1; the map retains the cubic inflection un
perturbation. The second mode, with coefficient C2, appears due to a shift f
critical line along the curve of constant winding number. In accordance w
[25], expressions for the coefficients C1 and C2 via parameters of the orig
circle map may be written as follows:

r � rc ¼ C1 � 0:01749C2 � 0:00148C2
2; k � kc ¼ C2.

We regard C1 and C2 as special local coordinates (‘‘scaling coordinate
neighborhood of the GM critical point in the parameter plane.
Now, we are ready to formulate the basic scaling property of dynamics

GM critical point in presence of noise that follows from (21).
If we have some parameter shift from the GM critical point and decrease i

way that the coefficients C1 and C2 reduce by factors d1 and d2, respectiv
reduce noise amplitude e by factor g, then the form of the stochastic m
remains unchanged. Thus, at the new parameters, the noisy system will dem
statistically similar behavior as that with the old ones, but with a characteri
scale increased by factor Fkþ1=Fk ffi w�1 ¼ ð

ffiffiffi
5

p
þ 1Þ

�
2.
4. Scaling properties and their demonstration in numerical computations
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Let us discuss some manifestations of the effects of noise on the circle ma
GM critical point and in its vicinity in numerical experiments, in a frame o
regularities outlined in the previous section.

4.1. Noisy critical attractor

To examine scaling properties of the critical orbit at the GM point it is co
to represent the motion in coordinates xnþFk

versus xn as done in Secti
subsequent Fibonacci numbers Fk.
First, we demonstrate in Fig. 3 the scaling property of the noiseless critic

Inset in each picture shows a fragment of it, and these fragments are pictu
magnification increasing by factor a ¼ �1:2885 . . . from one to another
Observe nice similarity of these rescaled plots. (Formally speaking, in acc
with RG analysis, this self-similarity is asymptotic: it become precise only a
and for asymptotically small scales.) In the central diagram (b) the inset is
upside down because of negativity of the scaling factor a.
In presence of noise, a subtle structure of the critical quasiperiodic orbit is

out level by level, as the intensity of noise grows. In accordance with conclu
the previous section, each new level blurs out as we increase magnitude of t
source by factor g ¼ 2:30618 . . . Diagrams in Fig. 4 show portraits of th



attractors of the model system (3) at the GM critical point with the noise intensity
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Fig. 3. Illustration of scaling for the golden-mean critical orbit in coordinates xnþFk
versus xn, F k ¼ 8, 13,

21 without noise. In each next picture an inset shows a fragment with magnification increased by a ¼

�1:2885 . . . in comparison with the previous picture.

Fig. 4. Portraits of the orbit of the noisy circle map (3) at the GM critical point r ¼ rc ¼ 0:606661 . . .,
K ¼ 1 at the noise amplitude values e ¼ 0:005 (a), e ¼ 0:005=g (b), and e ¼ 0:005=g2 (c).

A.P. Kuznetsov et al. / Physica A 359 (2006) 48–64 57
parameter e ¼ 0:005 (a), e ¼ 0:005=g (b), and e ¼ 0:005=g (c). The right-han
represent boxes from the previous diagrams, with magnification for the plot
and (c) with factors C, aC, and a2C, respectively, where C is some constant.
similarity of the pictures for the noisy attractors.

4.2. Lyapunov exponent in the presence of noise

In accordance with results of Section 3, at the GM critical point the sys
demonstrate similar behaviors for noise intensity values e and e=g, and in th



case characteristic time scale is larger by factor W ¼ w�1 ¼ 1:6180 . . .. Hence,
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Fig. 5. Plots for the Lyapunov exponent versus the noise intensity e. A selected box is shown with

magnification by a factor W ¼ 1:618 . . . along the vertical axis, and by a factor g ¼ 2:30618 . . . along the
horizontal axis.

A.P. Kuznetsov et al. / Physica A 359 (2006) 48–6458
magnitude of the Lyapunov exponent at e=g must be less than that at e by thi
Fig. 5 shows plots for the Lyapunov exponent versus the noise intensity e. A
box is shown with magnification by factor W along the vertical axis, and by
along the horizontal axis. Observe self-similarity of the pictures under th
change.
Let us estimate a critical index for the Lyapunov exponent with respec

intensity of noise. As we know, a change of e by factor g is accompanied
change of Lyapunov exponent by factor W . Thus, it must behave as

L / eZ,

where Z ¼ loggW ¼ 0:575 891 387::: Fig. 6 shows dependence for L of e in
logarithmic scale. The points obtained in the numerical computations ar
placed along the straight line with slope Z.
It is worth noting a kind of noisy stabilization of the dynamics at the GM

Indeed, the noise promotes a decrease of the Lyapunov exponent, i.e. a dec
sensitivity in respect to the initial conditions, and delays the onset of chaos. T
conclusion was mentioned in Refs. [14,21]. It is opposite to situation in the
period-doubling transition to chaos [26].

4.3. Scaling regularities for a neighborhood of the critical point in presence o

Now let us turn to examination of scaling regularities in the circle map o
with detuning of the control parameters from the GM critical point.
Let us start with consideration of variation of one parameter r with

K ¼ 1. It implies that the map retains the cubic inflection point. In the p



universal evolution operator (21) a shift of r gives rise to the mode with eigenvalue
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Fig. 6. Plot of the Lyapunov exponent versus noise intensity at the GM critical point in double

logarithmic scale (dots). The straight line corresponds to the relation (23).
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d1 ¼ �2:83361:::;, and this universal number will present in the scaling rela
Fig. 7 illustrates the corresponding scaling property of the dynamics

noise. The central diagram shows the rotation number dependence on para

rðrÞ ¼ lim
n!1

xn

2pn
.

(In the computation of r the modulus operation is ignored in the main
or (3).)
The pictured object is known as ‘‘devil’s staircase’’ [27]. It has infinite nu

steps, each placed at a rational value of the rotation number. Steps corres
crossing Arnold’s tongues and to periodic motions. Growth of r(r) takes pl
rest fractal set of parameter values associated with irrational rotation numb
with quasiperiodic motions. At K ¼ 1 this set has zero measure on axis r (‘‘c
devil’s staircase’’ [27]). The golden mean rotation number occurs just
parameter rc associated with the critical point under study. Panels to the lef
the right from the main central diagram of Fig. 7 show details of the
structure in a vicinity of the GM point. The property of self-similarity co
reproduction of the structure in small scales under magnification by factor
the horizontal axis and by factor (�W2) ¼ �2.6180y along the vertical ax
In presence of noise, the rotation number may be determined in n

simulations via the formula (24) in the same way as in a noiseless case, as an
over a large number of iterations. In the noisy system, however, we cannot
periodicity or quasiperiodicity in usual pure sense. Nevertheless, som
classification remains yet possible.
At some values of r one can observe relatively long time intervals of d

close to periodic. These intervals alternate with rare noise induced ‘‘phas



where the variable x accepts a relatively fast positive or negative shift approximately
icity. At
emporal
rsion of
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by a unit. These are, to say, motions representing a noisy version of period
other values, the variable x evolves without notable plateaus in the t
dependence, with statistically well-defined trend. It corresponds to a noisy ve
quasiperiodicity.
Fig. 7. Illustration of the local scaling property in a vicinity of the golden mean critical point without

noise: a plot of rotation number r versus parameter r (‘‘devil’s staircase’’). Property of self-similarity

consists in reproduction of the structure in small scales under magnification by factor d1 ¼ �2:8336 along
the horizontal axis, and by factor ð�W 2Þ ¼ �2:6180 . . . along the vertical axis.

Fig. 8. Illustration of scaling in the structure of devil’s staircase near the golden mean critical point in

presence of noise. The main diagram and the first inset correspond to the noise level e ¼ 0:1. The
subsequent pictures in order shown by arrows are plotted for noise intensities, respectively, e ¼ 0:1=g and
0:1
�
g2.



On a plot of rotation number versus parameter r the picture looks like sequential
e fractal
ollowing
rst inset
he series
ectively.
outside

r versus
es of the
ally blur
apunov

tochastic
tongues.
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smoothing out of the finest and than of larger and larger scale details of th
structure of devil’s staircase. This phenomenon obeys the scaling property f
from the RG analysis, as illustrated in Fig. 8. The main diagram and the fi
correspond to the noise level e ¼ 0:1. The second and the third pictures in t
(see arrows) are plotted for the noise levels e ¼ 0:1=g and 0:1

�
g2, resp

Observe obvious good correspondence of the visible structures in the three
panels.
Fig. 9 shows a set of gray-scale Lyapunov charts on a plane of parameter

noise intensity e at K ¼ 1. Dark gray areas correspond to large negative valu
Lyapunov exponent. These are domains of ‘‘noisy periodicity’’, which gradu
out with increase of noise. Light gray areas correspond to small negative Ly
exponent. These are domains of ‘‘noisy quasiperiodicity’’.
Finally, let us allow variation of two control parameters r and K in the s

circle map (3) and examine scaling properties of the picture of the noisy Arnold
Fig. 9. Lyapunov charts demonstrating scaling in a neighborhood of the GM critical point at constant

critical value of K ¼ 1 on a plane of parameter r and noise amplitude e. Horizontal and vertical scales in a
sequence of diagrams in order indicated by arrows are subsequently changed, respectively, by factors

d1 ¼ �2:8336 and g ¼ 2:30618. Simultaneously gray scale coding is redefined at each new level of

magnification to make the similarity clearly visible.



In Fig. 10 the main diagram shows a gray-scale Lyapunov chart for a part of the
e in the
e critical
hown in
ller and
intensity
s of the
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Fig. 10. Lyapunov charts demonstrating scaling in a neighborhood of the GM critical point. Rules of the

gray scale coding are the same as in Fig. 1. The main diagram (a) plotted in coordinates (r; K) corresponds

to the noise level e ¼ 0:03. Interior of a curvilinear quadrangle is shown separately (b) in scaling

coordinates (C1, C2). On panels (c) and (d) horizontal and vertical scales are subsequently changed by

factors d1 ¼ �2:83361::: and d2 ¼ 1:66042:::, respectively, and the noise level is decreased by factor g ¼
2:30618::: Gray scale coding is analogous to that in Fig. 1 and redefined at each new level of magnification

to make the similarity clearly visible.

A.P. Kuznetsov et al. / Physica A 359 (2006) 48–6462
parameter plane with noise amplitude e ¼ 0:03. A curvilinear quadrangl
diagram is bounded by coordinate lines of the scaling coordinates (22). Th
point GM is disposed exactly in the middle of the quadrangle. Its interior is s
the first inset in the scaling coordinates. The next panels represent sma
smaller vicinities of the critical point with subsequent decrease of the noise
by factor g. Observe evident similarity of the pictures under several step
rescaling.
5. Conclusion

ffect of
haos via
is of the
In this article we considered scaling regularities associated with the e
additive noise on a sine circle map near the critical point of transition to c
the quasiperiodic motion with the golden-mean rotation number. On a bas



renormalization group approach we formulated several scaling relations and
ntion to
orbit, of

ne circle
ms with
ideology
for self-
tions in
present
ion and
l nature
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demonstrated them in numerical computations. In particular, we put atte
smearing due to the presence of noise of small-scale structure of the critical
devil’s staircase, and of the noisy Arnold tongues.
It may be conjectured that the stated regularities are valid not only for a si

map, but for the entier universality class of nonlinear dissipative syste
quasiperiodic dynamics, which it represents. This assertion follows from the
of the RG approach. Thus, the same regularities will be intrinsic e.g.
oscillators and rotators under external periodic force, Josephson junc
microwave field, driven fluid convection etc. As expected, the results of the
research will be helpful in treatment of experimental results of observat
investigation of the onset of complex behavior in systems of different physica
demonstrating transition to chaos via quasiperiodic motions.
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