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A complex fine structure in the topography of regions of different dynamical behavior near
the onset of chaos is investigated in a parameter plane of the 1D Chua’s map, which describes
approximately the dynamics of Chua’s circuit. Besides piecewise-smooth Feigenbaum critical
lines, the boundary of chaos contains an infinite set of codimension-2 critical points, which
may be coded by itineraries on a binary tree. Renormalization group analysis is applied which
is a generalization of Feigenbaum’s theory for codimension-2 critical points. Multicolor high-
resolution maps of the parameter plane show that in regions near critical points having periodic
codes, the infinitely intricate topography of the parameter plane reveals a property of self-

similarity.

1. Introduction

In the usual scenarios of transition to chaos, one
has in mind a sequence of bifurcations which is ob-
served as one tunes a control parameter of a non-
linear system from a regime of regular dynamics
to a chaotic one. However, in physics, engineering
and other fields, we often deal with systems con-
trolled not by one but two or more essential pa-
rameters. In such cases instead of looking for a
“scenario” we must pose a broader question con-
cerning the global geometry of the parameter-space
topography near the onset of chaos. Empirical data
tell us that this topography can be extremely com-
plicated and has a fractal-like structure. In Fig. 1
we show how it looks in a two-dimensional param-
eter space of Chua’s circuit [Chua et al., 1986, Ko-
muro et al., 1991]. This picture was made from
the approximate 1D Chua’s map [Chua et al., 1986,
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Genot, 1993, and appears to give a remarkably
good correspondence with that obtained from an
exact description via the differential equations.

In Fig. 1(a) different colors designate regions of
periodic behavior with different periods while the
black color corresponds to chaos, or periodic or-
bits having very high periods. There exist many
cusps near the onset of chaos, and each cusp gives
rise to a pair of emanating fold lines which coin-
cide with the lines of tangent bifurcations. The
presence of cusps and folds leads to the appear-
ance of multistability: in the parameter region
between each pair of folds, the system exhibits
at least two attractors having different basins of
attraction in the state space. Narrow bands of pe-
riodicity are located along the fold lines and pene-
trate far into the area occupied by chaos. Also one
can see lines of period-doubling bifurcations in the
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parameter plane. They converge to critical lines,
which are just the piecewise-smooth parts of the
boundary of chaos. To avoid clutter, Fig. 1(b) iden-
tifies the important boundary lines which will be
referred to in this paper.

Suppose we draw an arbitrary one-parameter
curve in the parameter plane of Fig. 1 which starts

from a region of regularity to a region of chaos.
In a typical case it will cross transversely a crit-
ical line and, of course, the period-doubling lines
which accumulate to it. This means that if we tune
only one parameter in Chua’s circuit and observe
a transition to chaos we will see typically a classic
period-doubling cascade. It is well known that this
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Fig. 1. (a) Topography of the dynamical behavior of the 1D Chua’s map near the onset of chaos in the (o', 3) parameter
plane, @’ = o — 0.683. At each of the 300 x 300 pixels a number of iterations were made and the presence of periodicity was
checked. Different periods are coded by colors (1 — green, 2 — yellow, 4 — violet, 8 —red, 3 — pink, 6 — light blue). Black
corresponds to chaos or unrecognized long-period regimes. (b) Sketch of the parameter plane identifying some important
areas, lines and points: D1, D2, and D3 are the lines of the first, second and third period-doubling bifurcations, respectively, F
denotes a Feigenbaum’s critical line. Two (of an infinite number) cusps (C) and their associated pairs of fold lines are marked.
(c) Sketch of the parameter plane where the location of several codimension-2 critical points is shown: tricritical points are
marked by circles; the square and triangle denote critical points corresponding to RG cycles of period-2 and 3, respectively.
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cascade exhibits a remarkable property of quantita-
tive universality discovered by Feigenbaum and ex-
plained by him using a renormalization group (RG)
analysis [Feigenbaum, 1978, 1979]. In particular,
the bifurcation diagram near the critical lines
exhibits a property of self-similarity or scaling.
Namely, an interval encompassing regions of dif-
ferent dynamical regimes reproduces itself under a
change in scale by the universal Feigenbaum’s fac-
tor & = 4.6692. .. along any direction transversal to
the critical line. Note, that this property is true in
an asymptotic sense: it gives an increasingly higher
precision as one explores a decreasingly narrower
vicinity of the critical line.

If we turn to a two-parameter study, we can
no longer restrict ourselves to the Feigenbaum
scenario, which is a codimension-1 bifurcation phe-
nomenon, but must attempt to understand the na-
ture of the entire boundary of chaos in Fig. 1. In this
connection, it is crucial to note that the 1D Chua’s
map happens to be bimodal in the parameter region
under investigation. This means that the 1D Chua’s
map has both a maximum and a minimum on an in-
terval which is mapped onto itself. This is precisely
the condition which is responsible for the compli-
cated structure of the boundary of chaos. We shall
show that beside the Feigenbaum critical lines, the
boundary of chaos in the 1D Chua’s map (as well
as in other bimodal maps, see Shell et al. [1983],
MacKay & Tresser [1987,1988], Gambaudo et al.
[1987], MacKay & van Zeijts [1988]) contains an in-
finite number of codimension-2 critical points. In
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(Continued)

Fig. 1(c) we show only a few of these points in the
parameter plane. Hence, to uncover the nature of
the entire boundary of chaos we must investigate
the dynamics near these points.

We shall see that all possible types of
codimension-2 critical points are defined by a set
of infinite binary codes. Among them the subset of
codes having periodic tails is of particular impor-
tance. The topography of the parameter plane near
the corresponding critical points reveals a property
of two-parameter self-similarity or wvector scaling:
a two-dimensional structure of regions of different
behavior is reproduced under a scale change along
appropriate axes in the parameter plane. These
self-similar two-dimensional patterns of the param-
eter space topography are universal for all bimodal
maps (up to a linear parameter change) and depend
only on the code of the associated critical point.

This paper is organized as follows. In Sec. 2
we recall the differential equations which modeled
Chua’s circuit and the basis for its reduction to a
one-dimensional map. We also describe and explain
how the shape of this map is changed as we vary two
control parameters. The elegant construction of a
binary tree of superstable orbits due to Shell et al.
(1983] is reproduced for the 1D Chua’s map in
Sec. 3. This construction allows us to find the
location of codimension-2 critical points which ap-
pear as end points of the tree branches in the limit of
infinite branchings. Natural codes for the itineraries
on the binary tree are introduced, which give also
a coding rule for the critical points. In Sec. 4 we
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consider the solutions of Feigenbaum’s RG equa-
tion corresponding to codimension-2 critical points
and apply them to analyze the dynamics of the
1D Chua’s map exactly at these points. We dis-
cuss the Cantor-like structure of critical attractors
and their dimensions, the f(a)-spectra and the
Fourier spectra of corresponding dynamical regimes.
Section 5 is devoted to the consideration of small
perturbations of the RG equation solutions which
allows us to understand the universality and scal-
ing properties of the parameter plane topography
near the critical points. We present multicolor high-
resolution computer graphics of two-dimensional
patterns of the universal topography. Section 6 con-
tains the conclusion and a brief discussion.

2. Chua’s Circuit and 1D Chua’s Map

Chua’s circuit is an electronic system modeled by
the following set of differential equations

¢ = oy — h(z)),
'g=.7;—y+z, (1)
Zz—ﬁy,

where z, y, z are the dynamical variables, o and
B are parameters, and h(z) is a piecewise-linear
function which is chosen in accordance with Chua
et al. [1986] as follows

h(z)=(2z-3)/7, =21,
=—z/7, lz| <1,
=2 +3)/7, z<-1. (2)

Using the Poincare section technique, the exact de-
scription of the system (1) may be reduced to a
two-dimensional map which, in turn, may be ap-
proximated by a one-dimensional map

o X = " (X),

generally called the Chua’s map in the literature.
The procedure for constructing this map is described
in detail by Chua et al. [1986] and Genot [1993].

Equations (2) and, consequently, the Chua’s
map depend on two parameters « and §. How-
ever, in order to obtain clearer color graphics in a
narrow region crammed with a very diverse struc-
ture, we have used the transformed parameters o’ =
o —0.683 and (3 in Fig. 1, and in the following con-
sideration.

Unfortunately, Chua’s map does not have a sim-
ple explicit analytical representation. To compen-
sate for this, we present in Fig. 2 a set of plots
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Fig. 2. Plots of the Chua's map X = X', X' = n"(X) for

a set of parameter values o/ and 8. A diagonal line X = X’
is also shown in each plot. The parameter region chosen
corresponds approximately to the area near the boundary of
chaos. Bimodality of Chua’s map may be seen in some of the
pictures.

showing the shape of the map for a range of param-
eter values which cover the region of the parame-
ter plane depicted in Fig. 1. Observe that in some
pictures the map is bimodal, i.e., it has both a max-
imum and a minimum point in the region of inter-
est. We shall see that this leads to the appearance of
complicated structures near the borderline of chaos.

3. Binary Tree of Superstable Orbits

In our following consideration, the double super-
stable period-2" cycles will be of particular signif-
icance. They are defined as cycles which exist at
some exceptional points of the parameter plane and
which contain both extrema of the 1D map in their
orbits. The double superstable cycle will henceforth
be referred to as a (p, q)-type cycle if the point of
maximum is mapped into the point of minimum af-
ter p iterations and the minimum is mapped into
the maximum after q iterations. The period of such
a cycle is therefore equal to p + q.

Figure 3(a) (left most inset) shows an iteration
diagram for Chua’s map at the point of the parame-
ter plane where a (1, 1)-type double-superstable cy-
cle of period-2 is realized. Starting from this point
in the parameter plane, let us move along a curve,
at which any point satisfies the condition that the
maximum is mapped into the minimum after one
iteration. We will denote this curve by U(1). Mov-
ing along the U(1) curve from the (1, 1)-cycle we can
find a point, where the minimum is mapped into the
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Fig. 3. An illustration of the construction of a superstable orbit binary tree. The itineraries are coded by a sequence of
symbols U (up) and D (down). The double superstable cycles from Chua’s 1D map correspond to the branching points of the
binary tree. (a) o = 2.42863139, 3 = 2.66840554; {b) a = 3.18121220, 3 = 3.74564570; (c) o = 3.00564702, 5 = 3.41905639;
(d) & = 3.38557055, 8 = 4.05622519; (e) o = 3.30417265, 5 = 3.92456469.

maximum again, but after three iterations. Hence,
a period-4 double superstable cycle of type (1, 3) ex-
ists here [see the inset in Fig. 3(b)]. Alternatively,
we can move from the initial (1, 1)-cycle along an-
other curve, denoting by D(1), where the minimum
is mapped into the maximum after one iteration.
Along the D(1) curve, we can find a point where a
period-4 double-superstable cycle exists which has
the type (3,1) [see the inset in Fig. 3(c)]. Note that
our choice or the symbols “U” and “D” stands for
“up” and “down”, respectively.

In a similar manner we can start from any (p, q)-
type double superstable cycle of period p + ¢ = 27.
Then two curves, U(p) and D(gq) emanate from the
corresponding point in the parameter plane. The
U(p) curve is defined by the condition that the max-
imum is mapped into the minimum after p itera-
tions, and the D(q) curve is defined by the condition
that the minimum is mapped into the maximum af-
ter g iterations. Moving along the U(p) [or D(q)]
curve we come to a point where a (p, p + 2q)-type
[or (2p+ g, q)-type] period-2"*! double superstable
cycle exists. We can depict the infinite family of
U and D curves by drawing a binary tree as shown
schematically in Fig. 4. Note that the branching
points correspond to double superstable cycles.

We shall restrict our following considerations
to the upper half of the full binary tree. On this
part of the tree, the orbits of the Chua’s map visit
only two of the three piecewise-linear regions of the
vector field (1). In Table 1 we give the coordinates
of all branching points (i.e., the location of double
superstable cycles) up to period 64. Figure 5 shows
the actually calculated configuration of the binary
tree in the parameter plane of the Chua’s map. In
this picture we see how the branches of the tree
enter into the complicated topological structure of
Fig. 1.

Using the above notations, we can code each
double superstable cycle naturally by a finite string
of symbols U and D. Such a code designates a
unique sequence of U and D curves in the parame-
ter plane leading to this cycle from the initial point
which corresponds to the (1,1)-type cycle. Mov-
ing along the branches of the binary tree according
to any given UD-code and tracing the cor-
responding attractor of the system, we see a
period-doubling cascade. At each branching point
the attractor becomes a double superstable cycle of
some period 2". Observing when we move along
the corresponding branches on the binary tree, we
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can associate an infinite string of symbols U and
D with an infinite period-doubling cascade. Hence-
forth, the limit point of this cascade will be referred
to as a codimension-2 critical point associated
with the given infinite UD-code, or simply a critical
point. Note that the period-doubling cascade under
consideration here does not obey Feigenbaum’s law;
its convergence rate differs from Feigenbaum’s
and depends on the structure of the UD-code. In
Table 2 we present the coordinates of some par-
ticular critical points generated by simple periodic
UD-codes [see also Fig. 1(c)]. They are calculated
with high precision using the method described in
Appendix A.

If we consider all possible combinations of in-
finite UD-codes, we would obtain an infinite num-
ber of critical points. The rough schematic sketch
of the binary tree in Fig. 4 shows their relative
locations in the parameter plane. In fact, the set
of codimension-2 critical points forms a Cantor-like

(a. p)-planc Ny T

(L)

Fig. 4. Rough schematic sketch of the binary tree
in the parameter plane. The branching points correspond to
double superstable cycles; their (p, g)-types are shown. A
codimension-2 critical point is located at the end of every
path through an infinite number of branching points. Since
there are infinitely many distinct paths, it follows that there
are infinitely many critical points. Each critical point is coded
by an infinite sequence of symbols U and D according to the
itinerary leading to these point along the branches labeled
by U and D. Some of the tricritical points are identified
by solid circles (for the case when the tail of the code is
...UUUUU ...) and by open ones (for the case when the tail
of the code is ... DDDD...) the critical points correspond-
ing to a period-2 (code UDUDUD ...) and a period-3 (code
UUDUUD ...) cycle of the RG equation are identified by a
small square and a small triangle and labeled RG2 and RG3,
respectively. Pieces of Feigenbaum’s critical lines (shown
dotted) are labeled by F.

Table 1. Coordinates of points corresponding to double-
superstable cycles in the (a, 3) parameter plane of Chua’s
map.
Period Code Type a B
2 (1,1) 2.428631394 2.668405542
4 U (1,3) 3.181220121  3.745645702
8 vU (1,7 3.385570546  4.056225192
UD (5,3) 3.304172652  3.924564694
16 vuu (1,15) 3.420523839 4.110073977
uvuD 9,7 3.451202705 4.154022937
UDU (5,11) 3.371607421  4.026497755
UDD (13,3) 3.322086756  3.950706806
32 vuvu (1,31) 3.425635489  4.117966453
vuuvpD (17,15)  3.446341076 4. 148658902
UubU (9,23) 3.468080765 4.179722569
UuUDD (25,7) 3.460629330 4.168074575
UDUU (5,27) 3.381321925 4.041250484
UDUD (21,11)  3.384883151  4.046391549
UDDU (13,19) 3.347452437  3.988976155
UDDD (29, 3) 3.324572114  3.954335126
64 Uuvuuuvu  (1,63) 3.426349800 4.119069717
vvuuD (33,31) 3.435019191 4.131995516
UUUDU  (17,47) 3.450729549  4.155286007
UUUDD  (49,15) 3.450159213  4.154362375
uubDuu (9,15) 3.470473747  4.183372220
UuDUD (9,55) 3.472615955 4.186547036
UUDDU  (41,23) 3.466915690 4.177636557
UuDDD  (57,7) 3.461930279 4.170013929
Ubpuuvu  (5,59) 3.382650546  4.043269477
UDUUD (37,27) 3.386207858  4.048583042
UDUDU (21,43) 3.389159747  4.052862761
UDUDD  (53,11) 3.386774450 4.049225161
UDDUU  (13,51) 3.351382924  3.994918392
UDDUD (45,19) 3.351198826 3.994606699
UDDDU  (29,35) 3.333371880 3.967599998
UDDDD (61,3) 3.324913299  3.954833242

set of the points at the boundary of chaos. The re-
maining part of the boundary is formed by Feigen-
baum’s critical lines and does not require a special
investigation.

4. Dynamics of Chua’s Map at
Codimension-2 Critical Points

In this section we will present a two-parameter gen-
eralization of Feigenbaum’s theory for describing
the dynamics of Chua’s map at codimension-2 crit-
ical points (see also Kuznetsov et al. [1993]). As
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Location of the binary tree in the (o', §) parameter plane of Chua’s map superimposed upon the background of the

Table 2. Some critical points of the Chua’s map.

Type Codes a,
Feigenbaum 6.54085103  10.00000000
Tricritical vuuvuvuvuouuy... 3.42646411 4.11924628

UUDDDDDDD ...  3.46213786 4.17032337
Upuyuvvuuyu... 3.38286211 4.04359100
UDDDDDDDD ... 3.32496761 3.95491253
Period-2 RG cycle  UDUDUDUDU ... 3.39053348 4.05493270
Period-3 RG cycle UUDUUDUUD... 3.47250666 4.18643549
UDDUDDUDD. .. 3.35238709 3.99639697

much as possible, we explain the main ideas of the
RG analysis via a more popular and intuitive ap-
proach. For a rigorous formulation we refer the
reader to a number of works devoted to the devel-
opment of theory of bimodal 1D map from a mathe-
matical point of view (see MacKay & Tresser [1987,
1988], Gambaudo et al. [1987], MacKay & van
Zeijts [1988]).

4.1. Renormalization group analysis

Let us take the point X = X™* at which the Chua’s
map has a maximum as our reference point and
consider further the translated map f(z) = n*(z+

X*) — X* [see Fig. 6(a,b)]. Let us apply this map-
ping twice [Fig. 6(c)] and rescale the dynamical vari-
able to normalize the resulting map f; at the origin,
namely, f1(0) = 1. Then we obtain a new function
(@) = arf(f(z/n)), & = 1/f(f(0)) [Fig. 6(d)).
A multiple repetition of this procedure leads to a
recurrent functional equation

frt1(z) = anfu(fu(z/an)), (3)

where an, = 1/ fr(f(0)). This is just the RG equa-

tion first considered by Feigenbaum [1978, 1979].
The above construction may seem rather

abstract, but it really makes a lot of sense. A
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Fig. 6. Plots of some maps which appear during the RG
analysis of the Chua’s map. For a specific example, the tri-
critical point a = 3.42646406, § = 4.11924620 is chosen.
(a) The original map 7*(z) at the critical point, {b) the
translated map f(z) = 7*(z + X*) — X*, (c) the double
iterated map f(f(z)), (d) the renormalized double iterated

map fi(z).

function f, obtained by an n-fold iteration of Eq. (3)
becomes a function which expresses the value of z
after 2"-fold iterations of the Chua’s map except
for a change of scale in the variable z. This scale
change is desirable because the interval of x which is
essential for our consideration is expanded to cover
the unit interval. In particular, it gives us the possi-
bility to compare recursively the functions f,
with different n over the same unit interval. It fol-
lows from Eq. (3), that the functions f, may be
calculated via the rule

fal@) = ¥ (- F7(0))/£7(0), (4)

where f2"(z) designates the 2"-fold functional com-
position of the map f(x).

Thus, roughly speaking, the RG approach
involves the construction and consideration of a
sequence of maps (or evolution operators) which de-
scribe the dynamics over an exponentially increas-
ing “time.” [Here, we abused our terminology in
using “time” to mean “number of iterations of the
original map f(z)”.] In fact, the “time” intervals
are doubled after each step of the RG transforma-
tion (3). This explains the efficiency of the RG ap-
proach near the onset of chaos. Indeed, it is here
where the long-period behavior of the system is of
particular importance.

Let us take now a critical point of Chua’s map
corresponding to a specific UD-code and make cal-
culations according to Eq. (4) to obtain a sequence

of f, functions. Here we will observe a simple cor-
relation. If the code has a k-periodic tail (i.e., a
combination of k symbols begins to repeat after
some position in the UD-code), then the sequence
fn also becomes k-periodic for a sufficiently large
n [see the examples in Fig. 7(a—)]. Hence, the
solution of the RG equation at this critical point
converges to a period-k cycle, which we called an
RG-cycle. In particular, for k = 1 the period is
equal to unity and we have a fized point of the RG
equation. If the code is given by a random UD-
sequence, then the sequence of f, functions will
appear to be chaotic [see the example in Fig. 7(d)].
In this case we say that an RG-chaos is realized.

Let us consider in detail the case of periodic
solutions, i.e., fixed points and RG-cycles. To find
an element of a period-k RG-cycle means to find
a function g(z) such that it is a fixed point of the
k-fold iterated version of Eq. (3):

Fain(@) = P f2 (2)aP). (5)

Here ol = 1/£2°(0) = 125" anss, and f2 de-
notes the 2F-fold functional composition of the f
map. In other words, g(z) must be a solution of
the functional equation

9(z) = ag® (z/a) (6)

where oo = 1/g(g(0}) is the value of the scaling fac-

tor agk) at the fixed point of the RG equation. We
remark that for a period-k RG-cycle, Eq. (5) will
have k fixed points, each obeying Eq. (6). However,
it is sufficient to find only one of them because the
remaining k— 1 functions corresponding to elements
of the RG-cycle can be obtained by 1, 2,..., k-1
direct iterations of the first fixed point function us-
ing Eq. (3).

Note that the solutions of Eq. (6) can be found
without any reference to the nature of the initial
map f(z). This justifies our calling such solutions
universal functions. To find these functions with
any prescribed precision it is convenient to use a
polynomial approximation. Then Eq. (6) is reduced
to a finite set of nonlinear algebraic equations in-
volving the unknown polynomial coefficients. We
solved this set of equations numerically by Newton'’s
method. As our initial approximation, the functions
fr. were obtained from Eq. (4) by iterations of the
Chua’s map. The result of our calculations, i.e., the
scaling constants o and the coefficients of the poly-
nomial expansions, are presented in Tables 3 and 4
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Fig. 7. Graphs of functions from the sequence f.(x) which were generated by iterating Eq. (3). Values of n are given for
each function. The Chua’s 1D map was taken as the initial function fg, the origin chosen at the point of its maximum (see
Fig. 1), for the following parameter values: (a) a = 3.42646406, 3 = 4.11924620, code UUUUUU ... This correspond to a
fixed point of the RG equation. (b) o = 3.39053347, 3 = 4.05493268, code UDUDUD ... This correspond to a period-2 cycle
of the RG equation. {c) a = 3.47250666, 3 = 4.18643549, code UUDUUD ... This correspond to a period-3 cycle of the RG
equation. (d) o = 3.46837499, 3 = 4.17984652, code UUDDUDU ... This correspond to renormalization chaos.

Table 3. Universal numbers for several types of critical points.
Feigenbaum Tricritical RG-cycle 2 RG-cycle 3
Codes Loouuuu... UDUDUD ... ...UUDUUD...
Scaling factor « —2.502907876 —1.690302971 —4.862645091 8.030267587
Parameter scaling 4.66920161 7.28468622 35.9286114 244.7687073
factors 81, 62 2.85712414 14.5957450 46.2910330
Critical —1.60119133 —2.05094049 —2.27516954 —2.14347576
multipliers g —2.27516954 —2.25392276
—2.27787495

for three simple critical points described by codes of
period 1, 2 and 3, respectively. We show the plots of
the universal functions in Fig. 8. Observe that they
are in excellent agreement with the corresponding
fn functions from Fig. 7.

The period-1 codes UUUUUU... and DDD-
DDD... relate to the so-called tricritical points.

Such points were introduced by Chang et al. [1981]
while studying the two-parameter quartic map
Znt1 = 1+ Ax2 + Bxt. For the code UUUUUU. ..
the fixed point solution of the RG equation
(Table 4) is the universal function gr(z) evaluated
by Chang et al. For the code DDDDD. .. a dif-
ferent solution g}.(z) will be obtained. However it
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Table 4.
solutions g(z) =3 c,z”.

Coefficients of polynomial approximation for

RG equation

Tricritical Period-2 Period-3

v .LLUuuuvu... v ...UDUDUD ... v ..UuUDUUD...

0 1 0 1 0 1

4 —1.834107907 2 —2.659451025 2 -2.325802068

3 0.012962226 4 —0.457073109 4 —0.431810277
12 0.311901739 6 2.998999170 6 1.769729434
16 —0.062014652 8 —-0.776220408 8 0.021283412
20 —0.037539287 10 —1.414948457 10 —0.743118612
24 0.017647313 12 1.370177562 12 0.209345906
28 0.001938265 14 —(.068984505 14 —0.012063820
32 —0.002820471 16 —0.580666023 16 (.679983089
36 0.000115457 18 0.174967752 18 —1.504391919
40 0.000399471 20 0.400482740 20 1.918087529
44 —0.000024793 22 —0.536278594 22 —1.799808881
48 —0.000121641 24 0.338283919 24 1.244301917
52 0.000070434 26 —0.126059065 26 —0.586942935
56 —0.000017980 28 0.026941179 28 0.166339351
60 0.000001909 30 —0.002582550 30 —0.021240090

is connected with gy(z) via a change of variable;
namely, g&(z) = [gr(z}/?)12. The function gr(x)
may also be obtained in this case, but the origin
must be taken at the minimum point of the 7*(X)
map rather than at the maximum. Consequently,
we need not distinguish these two cases of critical
behavior.

Observe that there is an infinite number of tri-
critical points in the parameter plane of Chua’s map
because the corresponding codes may have an initial
segment of arbitrary length and structure, followed
by a tail of a repeating symbol U, or D, symbols.
Some tricritical points are identified by circles in
Fig. 1(c) and Fig. 4. Note that the locations of the
tricritical points is quite specific: they all lie near
the edges of the complicated parts of the bound-
ary of chaos, and at the ends of the Feigenbaum’s
critical lines [Chang et al., 1981]. These properties
justify the choice of the term “tricritical” because
in the phase transition theory a point is called tri-
critical if an arbitrarily small neighborhood of this
point contains phase transition lines of both the first
and the second order. In our case the second-order
phase transitions are associated with Feigenbaum’s
critical lines, while the first-order phase transitions
are associated with jumps observed at the fold lines.
Indeed, both of them are present near each
tricritical point.

When we discussed tricritical points, we have
made the observation that the solution of the RG
equation remains invariant under an interchange of
the symbols U and D in the coding sequence, while
simultaneously taking the other extremum as the
origin. This kind of symmetry is valid for all codes.
Tt follows from the observation that the maximum
and the minimum play an identical role in the dy-
namics of the bimodal map. In particular, this
symmetry leads to the appearance of an interest-
ing property in the case of codes which reproduce
themselves under a “shift” operation after inter-
changing the U and L/ symbols. For example, the
period-2 code UDUDUD ... and the period-4 code
UUDDUUDD. .. have such a property. For these
codes similar dynamical behaviors are observed not
only after k steps of the RG transformation, but
after k/2 steps. We can say that the “period of the
scaling-cycle” (i.e., the number of period-doublings
needed to reproduce the dynamics) is twice less
than the period of the RG-cycle for this class of
codes (for other codes they coincide).

We can take into account the observed symme-
try by changing the coding rule. Namely, for each
UD-sequence we construct an SC-sequence in the
following manner: beginning from the second sym-
bol of the UD-code, we write an “S” if the preceding
symbol is the seme, and a “C” if it is changed. For
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Fig. 8. Universal functions obtained via numerical solution of the RG equation at different critical points: {(a) Feigen-
baum’s point, (b) tricritical point coded UUUUUU ..., (c) period-2 critical point coded UDUDUD ..., (d) period-3 critical
point coded UUDUUD ... For the cases {(c) and (d) two and three functions are shown corresponding to all elements of the

RG cycles.

example, given the code UUDUDUUDDDUDUD,
we obtain the transformed code SCCCCSCSS-
CCCC... The period of such an SC-sequence always
coincides with the period of the “scaling-cycle.” In
the work by MacKay & van Zeijts [1988], a the-
ory of bimodal 1D maps based on the last coding
rule is developed. However, their study involves
two-component RG equations. So, this approach
appears to be more complicated than the familiar
Feigenbaum’s analysis which we have adopted in
this paper.

4.2. Properties of critical dynamics

Here we consider the dynamics of the Chua’s map at
codimension-2 critical points with simple codes of
period 1, 2 and 3. For comparison, we also present
analogous results for the Feigenbaum’s case by tak-
ing a representative point on a Feigenbaum’s critical
line in the parameter plane.

In Fig. 9 iteration diagrams are presented for
the attractors of Chua’s map corresponding to dif-
ferent critical points. In each picture four frag-
ments having increasing levels of magnification are
shown. Note that the magnification coefficient is
chosen to be equal to the corresponding scaling fac-
tor a obtained from the RG analysis (see Table 3).
Reproduction of the same visible structure at dif-
ferent levels of resolution clearly demonstrates the
local self-similarity of the attractors near an ex-
tremum of Chua’s map. We see that on the bound-
ary of chaos (including Feigenbaum’s critical lines
and codimension-2 critical points) an attractor of
the bimodal map appears to be a fractal set resem-
bling the Cantor set but with a more complicated
construction rule. In Appendix B we describe a pro-
cedure for approximating these sets by unions of an
increasing number of intervals. In Fig. 10 we show
several levels of this algorithm which is analogous to
the well-known Cantor set construction procedure.
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Fig. 9. Iteration diagrams of Chua's map X = X', X' = n*(X) for different critical points (see the & and 3 coordinates
in Table 2): (a) Feigenbaum’s point, (b) tricritical point corresponding to the code UUUUUU ..., (c) the period-2 critical
point (UDUDUD.. ), (d) the period-3 critical point corresponding to the code UUDUUD ... In each picture a fragment is

selected and shown separately after several magnification steps. The respective factors of magnification o are found from the
RG analysis (see Table 3).
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Fig. 10. Several subsequent steps in the construction of the
Cantor-like attractors of the Chua’s map at different critical
points:  (a) Feigenbaum’s point, (b) tricritical point
(UUUUUU ...), (c) period-2 critical point (UDUDUD...),
(d) period-3 critical point (UUDUUD. . ).

To characterize quantitatively the global fractal
structure of the critical attractors we appeal to a
multi-fractal or thermodynamic formalism [Halsey
et al., 1986, Vul et al., 1984).

To find the Hausdorff dimension of an attractor
corresponding to a critical point having a k-periodic
UD-code, we calculate the sums

2n-1

Sp = E l'LD’ (7)
i=1

where I; denotes the length of the ith interval in the
nth level of the attractor approximation (Fig. 10).
Then we take two levels, n and n+ k&, and choose D
to make both sums S, and S,4% equal. The num-
ber D gives an approximate value for the Hausdorff
dimension. It converges rather fast as n increases
(see Table 5). The calculated Hausdorff dimension

Table 5.
different critical points.
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is a fraction and depends on the type of the critical
point.

To obtain the f(a)-spectra and the spectra of
generalized dimensions D(q), let us define the so-
called partition functions I',, which depend on two
parameters, ¢ and 7,

2n—1

Tn(g, )= Y P9/}, (8)
=1

where p = 27™ is a probabilistic measure attributed
to each of the intervals [; at the nth level of the
approximating attractor. Further, for any given 7
we choose ¢ to make I', and I'y,x equal to each
other, thereby giving us a ¢(7) dependence. Using
this ¢(r) function we can calculate

a = (dg/dr)™!,
f =aq —T7, (9)
D(g)=1/(1-4q).

Now choosing ¢ as a parameter we obtain the f(a)
and D(g) functions, which give us the f(a)-
spectrum and the generalized dimension spectrum
at the nth level. Then we increase n until the
desired precision is attained. Figures 11 and 12
give the f(«) spectra and D(q) spectra correspond-
ing to four different critical points. Note that the
maximum values of the f(a) functions are equal to
the Hausdorff dimensions of the attractors, that is
D(0). Moreover, the values of D(1) and D(2) are
equal to the information dimensions and the corre-
lation dimensions, respectively.

Figure 13 gives the Fourier spectra for the time
series generated by Chua’s map from different crit-
ical points. Qualitatively, all of these spectra have
the same structure as the familiar Feigenbaum’s
spectrum [see Fig. 13(a)]. They all exhibit an

Evaluation of Hausdorff dimension for attractors of Chua’s map in

Feigenbaum Tricritical Period-2 RG-cycle  Period-3 RG-cycle
Level D Level D Level D Level D
2-3 0.536914 2-3 0.65432 2-4 0.60252 2-5 0.60262
34 0.538250 34 0.65327 35 0.62194 3-6 0.61440
4-5 0.538009 4-5 0.64744 46 0.61599 4-7 0.61631
5-6 0.538053 56 0.64535 5-7 0.61260 5-8 0.61497
67 0.538044 67 0.64382 6-8 0.61484 6-9 0.61664
7-8 0.538045 7-8 0.64327 7-9 0.61409 7-10 0.61585
8-9 0.538045 8-9 0.64310 8-10 0.61427
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Fig. 11.  f(«) spectra for critical attractors of the Chua’s

map: (a) Feigenbaum’s point, (b) tricritical point
(UUUUUU...), (c) period-2 critical point (UDUDUD ...),
(d) period-3 critical point (UUDUUD .. ).
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Fig. 12. Spectra of generalized dimensions for critical

attractors of the Chua’s map: (a) Feigenbaum’s point,
(b) tricritical point (UUUUUU ...), (c) period-2 critical point
(UDUDUD...), {d) period-3 critical point (UUDUUD .. .).

infinite number of subharmonics with frequencies
w o< 27" and have a hierarchical organization: each
nth subharmonic level has less amplitude than the
previous one. However, the quantitative relations
between the levels are different for each type of
criticality.

5. Investigation of the Parameter Plane
Structure near Critical Points

Consider any critical point (o, 3.) and make a
small displacement in the parameter plane; namely,
a = a + Ax, 8 = (. + AS. Clearly, the

5, dB a
-20
-10
60
a0 Frequency —» Frequency —>
S, dB ©) d)
-20
-40
-60
%0 Frequency —3 Frequency —>
Fig. 13. Fourier spectra for time series generated by Chua’s

map at the critical points: (a) Feigenbaum’s point,
(b) tricritical point (UUUUUU .. .), (c) period-2 critical point
(UDUDUD . ..), (d) period-3 critical point {UUDUUD ...).

function f(z) which describes Chua’s map will un-
dergo a corresponding small perturbation. Thus,
to investigate the dynamics in the neighborhood of
critical points, we have to deal with the perturbed
solutions of the RG equation (3).

Linearized renormalization
group equation

5.1.

Here we shall study only perturbations of periodic
solutions of the RG equation (3) because it will lead
to a discovery of self-similar patterns in the param-
eter plane. However, if we have a period-k solution,
it will be more convenient to use Eq. (5). Here we
shall introduce a little trick which does not change
the final results but will simplify our calculations
considerably. Let us redefine the RG transforma-
tion using the scaling factor a corresponding to the
critical point, instead of the factors aﬁ{“) which de-
pend on n. Let us therefore search for the perturbed
solutions of the equation

frei(z) = af¥ (z/a), (10)
rather than Eq. (5). Let us substitute f,(z) =
g(z) + ehp(x), ¢ < 1, and obtain the linear ap-
proximation '

hnik(@) = al R (@)ha(z/c)
N-2
+ 3 FX T @hle™ (/)

+ ha(g™ Ha/a))], (11)



where

F ) = | 6" )|

N =2k,
df

f=gmti(z/a)

Equation (11) has the structure hn,yi(z) =
M hn, where M is a linear operator. If the per-
turbation hg(z) contains a contribution from some
eigenvector with eigenvalue &, then after p-fold iter-
ations of (11) this contribution will be multiplied by
the factor 67. Hence, only those contributions that
come from the eigenvectors having eigenvalues with
modulus exceeding unity will survive under multi-
ple RG transformations. For any UD-code there are
two such essential eigenvectors which we denote by
hi(x) and ho(z). After several iterations of the RG
transformation we obtain

hn+pk($) = Cléfhl(x) + Cztsghz(a)) (12)
where only the coefficients C and Cs depend on the
initial perturbation ho(z).

The last relation leads us to the following im-
portant conclusions.

We see that the form of the evolution operator
over long periods depends only on the two param-
eters C; and Cq, which are the coeflicients at the
relevant eigenvectors. Hence, only these two param-
eters will determine the type of the dynamical be-
havior which result from a small initial perturbation
of the map. We can use the values of C1 and C2 as
new coordinates in a parameter plane. Because we
consider only small perturbations, the values of C
and C are related to the perturbations Aa and AS
of the physical parameters by a linear transforma-
tion. Hence, if we choose appropriate coordinates,
namely, (Cy, C3), we will see the same pattern of
topography in the neighborhood of a codimension-
2 critical point with a particular UD-code for any
bimodal one-dimensional map. This is universality.

Moreover, if we rescale C; = C1/6%, Co =
C2/6%, and increase n = n + k then we see from
Eq. (12) that the evolution operator remains invari-
ant. This means that the pattern of topography re-
produces itself under the above change in scale when
accompanied by an increase in the iteration num-
ber of the original map by a factor of 2%. Thus, this
pattern is reproduced ad infinitum in smaller and
smaller neighborhoods of the critical point. This
is precisely the property of self-similarity or scal-
ing. Henceforth, we will call (C;, Cy) the scaling
coordinates.
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Recall that to obtain the above formulations we
have used Eq. (12) which was based on the assump-
tion that only two terms survive. This assumption
is strictly valid only in an asymptotic sense, i.e., as
n = 0o. In other words, the universality and scal-
ing properties hold, rigorously speaking, only in a
sufficiently small neighborhood of a critical point.
However, we shall see that in practice, this restric-

tion is not very strong.

We have to make a particular remark concern-
ing the symmetrical codes mentioned at the end of
Sec. 4.1. If the code reproduces itself after a shift
and a change of symbols U < D, then the pattern
of topography is reproduced not only after a change
in scale by factors §; and d2, but also by the square
roots of 61 and d». In this case the characteristic
time of the dynamical regimes is multiplied by 2k/2
instead of 2.

To find the relevant eigenvectors hj2(z) and
the eigenvalues 6;2 we again use polynomial ap-
proximation to obtain a finite set of algebraic equa-
tions instead of the RG equation in function space.
Hence, we have reduced the infinite-dimensional
eigenproblem for the linear operator (11) to a finite-
dimensional eigenproblem. The eigenvalues for sev-
eral types of critical points calculated by this
method are given in Table 3.

5.2. Self-sitmilarity and topography
of parameter space near
codimension-2 critical points

To demonstrate the above properties of the parame-
ter plane near codimension-2 critical points we need,
at first, to find a connection between the physical
parameters « and 8 of Chua’s map, and the scaling
coordinates C1 and Cs. A special procedure for this
purpose has been developed (see Appendix C). As
a result we obtain the following relations for three
critical-point representatives:

(1) Tricritical point UUUUUU. . ., a, = 3.4264643,
B. = 4.1192463,
o—a, =054 Cy +0.67 Cs,

(13)
8- B.=0.83 C; +1.00 Cs.

(2) Period-2 point UDUDUD. .., a, = 3.3905335,
B. = 4.0549327,

a—a.=—0.45 C1 + 0.57 Csa,
B—08,=-071C; +0.86 C,.
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(3) Period-3 point UUDUUD..., a, = 3.47250666, Figure 14 shows again a general view of the
Be = 4.18643549, (¢, 3) parameter plane of Chua’s map. Chosen
for detailed consideration are neighborhoods of the

o — o= —0.51 C1 +0.65 Cy, 15)  three critical points which are depicted as parallel-

B —08.=-080C;+0.98 Cs,. ograms formed by lines parallel to the C; and Cs

1.7 —

3.5
0.62 o’ 0.64

Fig. 14. Portions of the topography from Fig. 1 selected for detailed consideration. Neighborhoods of the critical points
are shown by parallelograms. A critical point is located in the center of each parallelogram: (1) tricritical point coded by
vuuvvuUv ..., (2) critical point coded by UDUDUD. .., (3} critical point coded by UUDUUD. ...

-.15 C2 W15
Fig. 15. The universal two-dimensional pattern of the parameter plane topography near the tricritical point UUUUUU ...
which is located in the center of the pictures. The picture on the left shows the interior of the parallelogram labeled “17 in
Fig. 14. Scaling coordinates (C1, Cz) are used here [see Eq. (13)]. The picture on the right shows a small fragment after
magnification by 6, and &2 along the vertical and the horizontal axes, respectively. The following color codes are used. For
the left picture: 2 — green, 4 — yellow, 8 — violet, 16 — red, 6 — pink, 12 — light blue; for the right picture the same colors
correspond to the doubled periods: 4 — green, 8 — yellow, 16 — violet, 32 — red, 12 — pink, 24 — light blue.
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-.1 C1 .1
Fig. 16. The universal two-dimensional pattern of the parameter plane topography near a critical point with the period-2
code UDUDUD . .. The critical point is located in the center of the pictures. The picture on the left shows the interior of the
parallelogram labeled “2” in Fig. 14. Scaling coordinates (C1, C2) are used here [see Eq. (14)]. The picture on the right shows
a small fragment after magnification by &; and &» along the horizontal and the vertical axes, respectively. The following color
codes are used. For the left picture: 2 — green, 4 — yellow, 8 — violet, 16 — red, 6 — pink, 12 — light blue; for the right
picture the same colors correspond to the quadrupled periods: 8 — green, 16 — yellow, 32 — violet, 64 — red, 24 — pink,
48 — light blue.

.1

1

Fig. 17. The universal two-dimensional pattern of the parameter plane topography near a critical point with the period-
3 code UUDUUD ... The critical point is located in the center of the pictures. The left picture shows the interior of the
parallelogram labeled “3” in Fig. 14. Scaling coordinates (C1, C2) are used here [see Eq. (15)]. The right picture shows a
small fragment after magnification by 6; and 62 along the horizontal and the vertical axes, respectively. The following color
codes are used. For the left picture: 2 — green, 4 — yellow, 8 — violet, 16 — red, 6 — pink, 12 — light blue; for the
right picture the same colors correspond to the periods multiplied by 8: 16 — green, 32 — yellow, 64 — blue, 128 — red,
48 — pink, 96 — light blue.

axes, respectively. In Figs. 15-17 the pictures inside
these parallelograms are presented in terms of the
scaling coordinates C and Cs. In each of these fig-
ures, a critical point is located exactly at the center
of the picture. A small box is marked and shown
on the right side after magnification. The magni-
fication factors are chosen equal to the §; and é&;
— eigenvalues of the linearized RG operator corre-
sponding to the critical point. Different colors de-
note periodic behavior with different periods; chaos

or very high periodic orbits are denoted in black.
To see more explicitly the similarity of the pictures,
we have redefined the colors in the magnified pic-
tures. The legend is given in the figure captions.
Observe the remarkable reproduction of the to-
pography inside the small rectangles, even through
the initial neighborhoods of the critical points which
we have chosen are not very small. Moreover, the
topography of the neighborhood of the period-2
point UDUDUD. .. is also reproduced when we use
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the magnification factors (6i/ %y and 632, in view of
the symmetry of the code.

6. Conclusion

In this paper we have discussed some peculiarities
of the boundary of chaos in a parameter plane of
Chua’s circuit using the approximate 1D Chua’s
map. We have emphasized the universality and
scaling properties of two-dimensional patterns in
the parameter plane topography. We have presented
examples of such patterns for neighborhoods of sev-
eral special points on the boundary of chaos. Our
analysis represents a two-parameter analog of the
familiar Feigenbaum’s theory, which is valid only
for typical one-parameter period-doubling cascades.
Such generalizations have recently attracted much
attention among theorists (see Chang et al. [1981],
Shell et al. [1983], Fraser & Kapral [1984], Gam-
baudo et al. [1987], MacKay & Tresser [1987, 1988],

MacKay & van Zeijts [1988], Carcasses et al. [1991)).

However, in contrast to Feigenbaum’s universality
which has been observed in a large number of real
systems, there has not been any physical experi-
ments which confirmed the two-parameter universal
phenomena near the onset of chaos. Although our
work is also theoretical, our equations come from
a concrete physical system; namely, Chua’s circuit,
which has many advantages from an experimental
point of view. First of all, this system is easily built
as a real electronic device. Secondly, the electronic
nature of this system makes it easy to process and
analyze generated signals, in sharp contrast to the
severe difficulties encountered in experiments on hy-
drodynamics. Finally, this system admits a very ac-
curate description by an approximate 1D map, and
this circumstance gives us the possibility for a de-
tailed comparison between experiment and theory.
We hope therefore that this paper will stimulate
much experimental investigations in the direction
we have suggested.

Appendix A
High Precision Calculation of
Codimension-two Critical Points

When a period-doubling bifurcation occurs, a new
stable cycle of twice the period arises; the orig-
inal cycle do not disappear but merely becomes

unstable. Thus, corresponding to the accumula-

tion points of the period-doubling cascades (includ-
ing points of Feigenbaum’s lines and codimension-2
critical points) a bimodal map has a complete set of
period-2™ cycles, where n can be arbitrarily large.
All these cycles are unstable. If we pick an element
z of such a cycle, make a small perturbation Az and
look at how it changes after one period of the cycle,
we see a corresponding change pAz, where |u] > 1.
The value u is called the multiplier of the cycle. If
z1,..., xy are elements of a period-N cycle of the
1D map f(zx), then its multiplier is obtained by the

chain rule
N

p=]f ().

i=1

(A.1)

The multipliers of period-2" cycles correspond-
ing to critical points possess the following property
of universality:

Consider a point having a UD-code with a
period-k tail. Then for a sufficiently large n, the
multipliers of period-2™ cycles exhibit a period-k
dependence on n; they assume a definite set of k
values ,ugl), ,u((f), cey u,(;k). These values are univer-
sal numbers intrinsic to the given k-periodic UD-
sequence. (Note that the values of ,uﬁ’) for different
% are not necessarily distinct: for symmetrical codes
mentioned in Sec. 4.1 and 5.2, the multipliers are
repeated with a smaller period equal to k/2.)

The universal multipliers for a given critical
point may be obtained via the corresponding solu-
tion of the RG equation (6) which we have denoted
by ¢g(z). Indeed, as we have explained in Sec. 4,
this solution defines an evolution operator for large
n’s which is universal up to a change in scale. How-
ever, the scale change does not influence multipliers.
Hence, if we calculate the multipliers of the period-
1, 2,..., 2% cycles of the map g(z), we would then
obtain the ug) values. In Table 3 we give these
values among other universal quantifiers for critical
points with simple codes.

To find codimension-2 critical points in the pa-
rameter plane, we initially obtain a rather rough
estimate of their positions as limit points of the
corresponding itineraries on the binary tree. Then,
choosing some number n we try to find such o and
3 values to make both the multipliers of period-2"
and 2"** cycles equal to appropriate universal val-
ues. Then we increase n and repeat the procedure
until a desired precision is attained. The results
converge quickly with increasing n.



Appendix B
Constructing Cantor-Like Attractors
at Critical Points

The Cantor-like algorithm for constructing subse-
quent approximating sets of intervals is well known
for the Feigenbaum’s attractor. For example, for
B = 10 we find the Feigenbaum’s critical point (i.e.,
the accumulation point of the period-doubling cas-
cade) in the Chua’s map at o = a, = 6.5408510.. .,
and the maximum is located at the point
X* = 1.1942673... Taking Xy = X* we obtain
X1 = 7*(Xp) = 14353, Xy = 7*(Xo) = 1.0677,
X3 = W*(Xo) = 1.3830, X4 = TI'*(X()) = 1‘2388,
X5 = 7*(Xp) = 14271, X¢ = 7*(Xp) = 1.1005,
X7 = m*(Xo) = 1.4054, Xz = 7*(Xo) = 1.1756.. ..
Then the attractor is approximated

by the interval [X;, X3] at the first level of the con-
struction,

by the union of two intervals [X;, X3] and [X2, X4]
at the second level,

by the union of four intervals [X;, X3],
[X3, X7], and [X4, X5] at the third level.

At the nth level, the attractor is approximated
by a set A, made up of the union of 27! inter-

[X2, X6]3

vals [Xl, Xgn—l+1], [XQ,XQn—1+2], e [X2n—1, Xg'n.];
namely,
2n—1
An = H [fl'/'f,-;, $i+2n—1] . (AZ)
i=1

Figure 10(a) shows the first few levels of this
construction.

To generalize the above rule let us recall our no-
tation (p, g) for double superstable cycles (Sec. 3).
Consider a specific UD-code which gives the
itinerary on the binary tree leading to a desired
critical point. Following this itinerary, we obtain a
sequence of integer pairs (p, q)n, where p + ¢ = 2™.
The integers n = 1, 2, 3,... will define again the
level number. From the bimodal map we can cal-
culate two sequences of iterations: y; and zj, i,
i=1,23,..., starting from the maximum and the
minimum, respectively. To obtain the end points of
the set of intervals for approximating the attractor
at the nth level, we find a pair (p, q),, and take p
terms from the first sequence, and ¢ terms from the
second sequence. Namely, we define

=y, 1<1<p, zpp<iip+q. (A3)

Substituting these z; into Eq. (A.2) we obtain a set
made of the union of intervals which gives an nth
level approximation of the attractor.
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Let us consider an example and choose a. critical
point with the period-2 code UDUDUD... having
coordinates a, = 3.390533,..., 5. = 4.054932 ...
(see Table 2). For these parameters the maximum
and the minimum of the Chua’s map are located
at the points X* = 1.2177503... and Yy = X** =
1.4418532. .., respectively. Taking Yy = X* and
Zp = X**, we obtain two sequences:

Y, = 7*(Yp) = 1.4503,
Ys = n*(Yp) = 1.4147,
Ys = 1*(Yp) = 1.4396,

= 7*(Yp) = 1.3950,

Yy = 7*(Yp) = 1.1192,
Yy = n*(Yy) = 1.1658,
Y6 = 7*(Yg) = 1.0921,

= 7*(Yp) = 1.2321, ...

and

Zy =7 (Zy) =1.0909, Zy=7*(Z;) = 1.3940,

Z3 =7 (Zp) = 1.2351, Z4 = n*(Zo) = 1.4489,

Z5 =7"(2p) =1.1094, Zg=r"(Zy) = 1.4080,
=m"(Zy) =1.1892, Zg=n"(Zp) = 1.4469,. ..

From Fig. 4 we see that the sequence of (p, g)
pairs for the above critical point is given by (1, 1),
(1,3), (5,3), (5,11), (21, 11),.... Hence, to obtain
the sequence of values X; which give the ends of the
intervals approximating the attractor we must take

1 term from the first sequence and 1 from the second
at the first level;

1 term from the first sequence and 3 from the second
at the second level;

5 terms from the first sequence and 3 from the sec-
ond at the third level;

5 term from the first sequence and 11 from the sec-
ond at the fourth level;

and so on.

For example, for the level number n = 3 we
obtain: X; = 1.4503, X2 = 1.1192, X5 = 1.4146,
Xy = 1.1658, X5 = 1.4396, X5 = 1.0909, X,; =
1.3940, Xg = 1.2351, and the approximated at-
tractor set is defined by the union of the intervals
(X1, X5], [ X2, Xe], [X3, X7], and [Xy4, Xg].

Figure 10(b-d) shows several levels of the at-
tractor for some critical points of codimension 2.

Appendix C

Connection between Physical and
Scaling Coordinates in the
Parameter Plane

Consider a critical point (a., ;) which has a UD-
code with a period-k tail. Let us take two left finite
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strings of UD-code containing n and n + k sym-
bols. We can find the points (a1, 81) and (a2, 32)
in the parameter plane, where the two correspond-
ing double-superstable cycles exist; henceforth they
are identified as similar.

It follows from the RG analysis that the coordi-
nates of these points must be related by some linear
transformation

Aa] [A Bl [ A«

Agl,  [C DJ|AB]l,’
where Aa1z = a12 — ac, Ab2 = b2 — B and
where the elements A, B, C, D are fixed for the
critical point (c., Bc). If the scaling property holds

A B

& ol
would have eigenvalues 6, and &2 equal to those pre-
dicted from the RG analysis. It follows that

(A4)

with infinite precision, then the matrix [

A+D=61+6, and AD— BC = 68,. (AD)

Hence, if we know the a and (3 coordinates of the
points corresponding to the two similar double-
superstable cycles, we could find the four elements
of the matrix from the four equations defined by
(A.4) and (A.5).

However, in practice, this simple method does
not yield a satisfactory precision because the scal-
ing holds only approximately for a sufficiently large
values of n. To improve this approach, we take co-
ordinates not of one, but of two pairs of similar
double-superstable cycles. The second pair is de-
fined by the same two n- and n + k-symbol strings
except for the last symbol. Their coordinates must
obey Eq. (A.4) too. Hence, we obtain from (A.4)
and (A.5) eight equations involving four unknown
matrix elements. They can be evaluated by a least
square method. Finally, we calculate eigenvectors
of the matrices via the usual techniques. We have
found this approach to give satisfactory precision.
The numerical results for three critical points with
simple codes are presented in Sec. 5.
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